
 
1)For (2,1,3) convolutional code, g(0) = [1 0 1 1] and g(1) = [1 1 1 1] the 

generator polynomials are  

g(0)(X) = 1 + X2 + X3  

g(1)(X) = 1 + X + X2 + X3  

and the information sequence d(X) = 1 + X2 + X3 + X4 ,find the code word 

Ans:C(0)(X)= g(0)(X). d(X) 

C(0)(X) = (1 + X2 + X3 + X4)(1 + X2 + X3)  

C(0)(X) = (1 + X2 + X3 + X4 + X2 + X4 + X5 + X6 + X3 + X5 + X6 + X7) C(0)(X) = (1 + 

X2 + X2 + X3 + X3 + X4 + X4 + X5 + X5 + X6 + X6 + X7) C(0)(X) = (1 + X7)  

  C(1)(X)= g(1)(X). d(X) 

C(1)(X) = (1 + X2 + X3 + X4)(1 + X + X2 + X3)  

C(1)(X) = (1 + X2 + X3 + X4 + X + X3 + X4 + X5 + X2 + X4 + X5 + X6 = +X3 + X5 + X6 

+ X7)  

C(1)(X) = 1 + X + X3 + X4 + X5 + X7  

and the code word is  

C(X) = [1 + X7, 1 + X + X3 + X4 + X5 + X7] 

After multiplexing, the code word become  

C(X) = C(0)(X2) + XC(1)(X2)  

C(0)(X2) = (1 + X14)  

C(1)(X2) = XC(1)(X2) = X(1 + X2 + X6 + X8 + X10 + +X14)  

C(1)(X2) = XC(1)(X2) = X + X3 + X7 + X9 + X11 + +X15  

C(X) = C(0)(X2) + XC(1)(X2)  

C(X) = 1 + X + X3 + X7 + X9 + X11 + X14 + X15  

    C = [ 11 01 00 01 01 01 01 11 ] 

The result is the same as convolution and matrix multiplication.  

 

 

 

 

 



2)For (3,2,3) convolutional encoder  

g(0) 1 = (1 1), g(1)
1 = (0 1), g(2) 1 = (1 1)  

g(0)
2 = (0 1), g(1)

2 = (1 0), g(2)
2 = (1 0)  

 

  
and the information sequence d(1)(X) = 1 + X2, d(2)(X) = 1 + X, find the encoding 

equations of the codeword 

Ans: 

 

C (X) = [C(0)(X), C(1)(X), C(2)(X)]  

 

C (X) = [1 + X2, 1 + X]   
    

C (X) = [(1 + X2).(1 + X) + (1 + X)X, (1 + X2).X + (1 + X)1,  

         = (1 + X2).(1 + X) + (1 + X)1]  

C (X) = [1 + X3, 1 + X3, X2 + X3]  

After multiplexing, the code word become  

C (X) = C(0)(Xn) + XC(1)(Xn) + . . . + X(n−1)C(n−1)(Xn)  

C(X) = (1 + X3)3 + X(1 + X3)3 + X2(X2 + X3)3  

C(X) = (1 + X9) + X(1 + X9) + X2(X6 + X9)  

C(X) = 1 + X + X8 + X9 + X10 + X11  

                       C=[11 00 00 00 11 11 00 00 ]           
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Equalization 

 

Introduction: 

Equalization is the technique used to improve the received signal quality. Equalization 

compensates for inter symbol interference (ISI) created by multipath within time dispersive 

channels. ISI –Inter symbol Interference: if the modulation bandwidth exceeds the 

coherence bandwidth of the radio channel, ISI occurs and modulation pulses are spread in 

time.          

Fundamentals of Equalization: 

 Equalization is a technique used to combat inters symbol interference. 

 In radio channels, a variety of adaptive equalizers can be used to cancel interference while 

providing diversity. 

 Since the mobile fading channel is random and time varying equalizers must track the 

time varying characteristics of the mobile channel, and thus are called adaptive equalizers. 

 In radio channels, a variety of adaptive equalizers can be used to cancel interference while 

providing diversity 

Block Diagram: 

 

Figure 13.1 Block Diagram of equalizer 
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 If x (t) is the original information signal, and f(t) is the combined complex baseband 

impulse response of the transmitter, channel, and the RF/IF sections of the receiver, the 

signal received by the equalizer may be expressed as 

 

 where f* (t) is the complex conjugate off(t) , nb(t) is the baseband noise at the input of the 

equalizer. If the impulse response of the equalizer is heq (t) , then the output of the 

equalizer is 

 

 where cn is  the complex filter coefficients of the equalizer 

 

Equalization techniques can be subdivided into two general categories 

1. Linear equalization. 

2. Nonlinear equalization. 

Types of Equalization Techniques: These categories are determined from how the output of 

an adaptive equalizer is used for subsequent control (feedback) of the equalizer. 

 

     Figure 13.2 

The decision maker determines the value of the digital data bit being received and applies a 

slicing or thresholding operation (a nonlinear operation) in order to determine the value of 

d(t). 

1. Linear Equalizer: If d(t) is not used in the feedback path to adapt the equalizer, the 

equalization is linear. 

2. Non Linear Equalizer: if d(t) is fed back to change the subsequent outputs of the 

equalizer, the equalization is nonlinear. 
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Linear transversal equalizer (LTE): 

 The most common equalizer structure is a linear transversal equalizer (LTE). 

 A linear transversal filter is made up of tapped delay lines, with the tappings spaced a 

symbol period (Ts).As shown in above fig13.2 

 The simplest LTE uses only feedforward taps, and the transfer function of the equalizer 

filter is a polynomial in Z-1. This filter has many zeroes but poles only at z = 0, and is 

called a finite impulse response (FIR) filter, or simply a transversal filter. 

 If the equalizer has both feedforward and feedback taps, its transfer function is a rational 

function of Z-1 , and is called an infinite impulse response (IIR) filter with poles and 

zeros. 

 Since IIR filters tend to be unstable when used in channels where the strongest pulse 

arrives after an echo pulse (i.e., leading echoes), they are rarely used. 

Classification Of Equalization Technique (see figure 13.3) 

 

               Figure 13.3 
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Linear Equalizer 

 

Introduction: 

                A linear equalizer can be implemented as an FIR filter, otherwise known as the 

transversal filter.This type of equalizer is the simplest type available 

Structure of a linear Equalizer: 

 

1. linear transversal equalizer: In such an equalizer, the current and past values of the 

received signal are linearly weighted by the filter coefficient and summed to produce 

the output, as shown in Figure 13.2 

  

 The output of this transversal filter before decision making (threshold detection) is given 

 

 Cn*represents the complex filter coefficients or tap weights, 

 d k is the output at time index k, 

 y i is the input received signal at time t 0 iT, 

 t 0 is the equalizer starting time ,N= N1 N2 1 is the number of taps 

 ,N1&N2 denotes the number of taps in forward and reverse portion of the equalizer 

respectively. 

The minimum mean squared error E [│e (n)│2] that a linear transversal equalizer can 

achieve is 
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 where│F(ejwt)│2 is the frequency response of the channel, and N0 is the noise spectral 

density. 

 

A lattice filter:The linear equalizer can also be implemented as a lattice filter. 

 Each stage of the lattice is then characterized by the following recursive equations 

 

 Where Kn(k) is the reflection coefficient for the it th stage of the lattice 

 Output of the equalizer is given by 

 

 Two main advantages of the lattice equalizer is its numerical stability and faster 

convergence. 

 The unique structure of the lattice filter allows the dynamic assignment of the most 

effective length of the lattice equalizer. 
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Nonlinear Equalization 

 

 

Nonlinear equalizers are used in applications where the channel distortion is too severe for a 

linear equalizer to handle. 

Nonlinear Equalization Methods: 

1. Decision Feedback Equalization (DFE) 

2. Maximum Likelihood Symbol Detection 

3. Maximum Likelihood Sequence Estimation (MLSE)           

Decision Feedback Equalization (DFE): The basic idea behind decision feedback 

equalization is that once an informationsymbol has been detected and decided upon, the 

ISI  that it induces on future symbols can be estimated and subtracted out before detection of 

subsequent symbols. It consists of a feed forward filter (FFF) and a feedback filter (FBF). 

 The DFE can be realized in either the direct transversal form or as a lattice filter as shown 

in the fig 13.5.below 

 The equalizer has N1 N2 1 taps in the feed forward filter and N3 taps in the feedback 

filter, and its output can be expressed as 
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 The minimum mean squared error a DFE can achieve is

 

 

Advantages of DFE: 

 DFE has significantly smaller minimum MSE than an LTE 

 The mean squared error of a DFE is much better than a LTE. 

 A DFE is more appropriate for severely distorted wireless channels 

Predictive decision feedback equalizer 

 It also consists of a feed forward filter (FFF) as in the conventional DFE.

 

However, the feedback filter (FBF) is driven by an input sequence formed by the difference 

of the output of the detector and the output of the feed forward filter. 
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 Hence, the FBF here is called a noise predictor because it predicts the noise and the 

residual ISI contained in the signal at the FFF output and subtracts from it the detector 

output after some feedback delay. 

Maximum Likelihood Sequence Estimation (MLSE) Equalizer : 

The MSE-based linear equalizers described previously are optimum with respect to the 

criterion of minimum probability of symbol error when the channel does not introduce any 

amplitude distortion. 

 Using a channel impulse response simulator within the algorithm, the MLSE tests all 

possible data sequences (rather than decoding each received symbol by itself), and 

chooses the data sequence with the maximum probability as the output. 

 The MLSE is optimal in the sense that it minimizes the probability of a sequence error. 

 The MLSE requires knowledge of the channel characteristics in order to compute the 

metrics for making decisions. 

 The MLSE also requires knowledge of the statistical distribution of the noise corrupting 

the signal. 
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Adaptive Equalization 

            Adaptive equalizers compensate for signal distortion attributed to inter symbol 

interference (ISI), which is caused by multipath within time-dispersive channels. Typically 

employed in high-speed communication systems, which do not use differential modulation 

schemes or frequency division multiplexing. The equalizer is the most expensive component 

of a data demodulator and can consume over 80% of the total computations needed to 

demodulate a given signal 

Adaptive Equalizer:

 

 The basic structure of an adaptive equalizer is shown in Figure 13.8, where the subscript k 

is used to denote a discrete time index 

 Notice in Figure 13.8 that there is a single input yk at any time instant. The value of 

ykdepends upon the instantaneous state of the radio channel and the specific value of the 

noise (see Figure 13.1).    

 The adaptive equalizer structure shown above is called a transversal filter, and in this case 

has N delay elements, N I taps, and N I tunable complex multipliers, called weight 

 The adaptive algorithm is controlled by the error signal ek. This error signal is derived by 

comparing the output of the equalizer, dk. The adaptive algorithm uses Ck to minimize a 

cost function and updates the equalizer weights in a manner that iteratively reduces the 

cost function 

Algorithm: 

 The input signal to the equalizer as 
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 The output of the adaptive equalizer is a scalar given by 

 

 Weight vector can be written as 

 

 Output in vector notation as 

 

 Error signal ek is given by 

 

 Putting the value of dkand dk‘the error signal is 

 

Algorithms for Adaptive Equalization 

            Since an adaptive equalizer compensates for an unknown and time-varying channel, it 

requires a specific algorithm to update the equalizer coefficients and track the channel 

variations. A wide range of algorithms exist to adapt the filter coefficients. 

The performance of an algorithm is determined by various factors which include:      

 Rate of convergence This is defined as the number of iterations required for the 

algorithm, in response to stationary inputs, to converge close enough to the optimum 

solution. A fast rate of convergence allows the algorithm to adapt rapidly to a stationary 

environment of unknown statistics. 

 Misadjustment: This parameter provides a quantitative measure of the amount by which 

the final value of the mean  square error, averaged over an ensemble of adaptive filters, 

deviates from the optimal minimum mean square error. 

 Computational complexity: This is the number of operations required to make one 

complete iteration of the algorithm 
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 Numerical properties: When an algorithm is implemented numerically, inaccuracies are 

produced due to round-oft' noise and representation errors in the computer. These kinds of 

errors influence the stability of the algorithm. 

Three classic equalizer algorithms: 

 Zero Forcing Algorithm 

 Least mean squares (LMS) algorithm 

 Recursive least squares (RLS) algorithm 

Zero Forcing Algorithm: 

 In a zero forcing equalizer, the equalizer coefficients Cn are chosen to force the samples 

of the combined channel and equalizer impulse response to zero at all but one of the NT 

spaced sample points in the tapped delay line filter. 

 The zero forcing equalizer has the disadvantage that the inverse filter may excessively 

amplify noise at frequencies where the folded channel spectrum has high attenuation. 

 The ZF equalizer thus neglects the effect of noise altogether, and is not often used for 

wireless links. 

Least Mean Square Algorithm: Robust equalizer is the LMS equalizer 

 The criterion used is the minimization of the mean square error (MSE) between the 

desired equalizer output and the actual equalizer output. . 

  
 The LMS algorithm is the simplest equalization algorithm and requires only 2N 1 

operations per iteration. Letting the variable n denote the sequence of iterations, LMS is 

computed iteratively by 

 The convergence rate of the LMS algorithm is slow due to the fact that there is only one 

parameter, the step size a, that controls the adaptation rate. 

 To prevent the adaptation from becoming unstable, the value of α is chosen from 

 

 λI ith eigenvalue of the covariance matrix RNN. 
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Recursive least squares (RLS): 

 In order to achieve faster convergence, complex algorithms which involve additional 

parameters are used. 

 A technique which significantly improves the convergence of adaptive equalizers is 

known as Recursive least squares (RLS). 

 The least square error based on the time average is defined as 

 

 λ is the weighting factor close to 1, but smaller than 1,e *(i, n)  is the complex conjugate 

of e (i, n), and the error e (i, n) is given as 

 

 y N(i) is the data input vector at time i 

 

 

















































Proakis-27466 book September 26, 2007 22:59

13

Fading Channels I: Characterization and Signaling

The previous chapters have described the design and performance of digital communi-
cation systems for transmission on either the classical AWGN channel or a linear filter
channel with AWGN. We observed that the distortion inherent in linear filter channels
requires special signal design techniques and rather sophisticated adaptive equalization
algorithms in order to achieve good performance.

In this chapter, we consider the signal design, receiver structure, and receiver per-
formance for more complex channels, namely, channels having randomly time variant
impulse responses. This characterization serves as a model for signal transmission
over many radio channels such as shortwave ionospheric radio communication in the
3–30 MHz frequency band (HF), tropsopheric scatter (beyond-the-horizon) radio com-
munications in the 300–3000 MHz frequency band (UHF), and 3000–30,000 MHz
frequency band (SHF), and ionospheric forward scatter in the 30–300 MHz frequency
band (VHF). The time-variant impulse responses of these channels are a consequence
of the constantly changing physical characteristics of the media. For example, the ions
in the ionospheric layers that reflect the signals transmitted in the HF band are always
in motion. To the user of the channel, the motion of the ions appears to be random.
Consequently, if the same signal is transmitted at HF in two widely separated time
intervals, the two received signals will be different. The time-varying responses that
occur are treated in statistical terms.

We shall begin our treatment of digital signaling over fading multipath chan-
nels by first developing a statistical characterization of the channel. Then we shall
evaluate the performance of several basic digital signaling techniques for commu-
nication over such channels. The performance results will demonstrate the severe
penalty in SNR that must be paid as a consequence of the fading characteristics of
the received signal. We shall then show that the penalty in SNR can be dramati-
cally reduced by means of efficient modulation/coding and demodulation/decoding
techniques.

830
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13.1
CHARACTERIZATION OF FADING MULTIPATH CHANNELS

If we transmit an extremely short pulse, ideally an impulse, over a time-varying mul-
tipath channel, the received signal might appear as a train of pulses, as shown in
Figure 13.1–1. Hence, one characteristic of a multipath medium is the time spread
introduced in the signal that is transmitted through the channel.

A second characteristic is due to the time variations in the structure of the medium.
As a result of such time variations, the nature of the multipath varies with time. That is,
if we repeat the pulse-sounding experiment over and over, we shall observe changes in
the received pulse train, which will include changes in the sizes of the individual pulses,
changes in the relative delays among the pulses, and, quite often, changes in the number
of pulses observed in the received pulse train as shown in Figure 13.1–1. Moreover, the
time variations appear to be unpredictable to the user of the channel. Therefore, it is
reasonable to characterize the time-variant multipath channel statistically. Toward this
end, let us examine the effects of the channel on a transmitted signal that is represented
in general as

s(t) = Re
[
sl(t)e

j2π fct] (13.1–1)

(a)

(b)

(c)

(d)

FIGURE 13.1–1
Example of the response of a
time-variant multipath channel to a
very narrow pulse.
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We assume that there are multiple propagation paths. Associated with each path is
a propagation delay and an attenuation factor. Both the propagation delays and the
attenuation factors are time-variant as a result of changes in the structure of the medium.
Thus, the received bandpass signal may be expressed in the form

x(t) =
∑

n

αn(t)s[t − τn(t)] (13.1–2)

where αn(t) is the attenuation factor for the signal received on the nth path and τn(t) is
the propagation delay for the nth path. Substitution for s(t) from Equation 14.1–1 into
Equation 13.1–2 yields the result

x(t) = Re

({∑
n

αn(t)e− j2π fcτn (t)sl[t − τn(t)]

}
e j2π fct

)
(13.1–3)

It is apparent from Equation 13.1–3 that in the absence of noise the equivalent
lowpass received signal is

rl(t) =
∑

n

αn(t)e− j2π fcτn (t)sl[t − τn(t)] (13.1–4)

Since rl(t) is the response of an equivalent lowpass channel to the equivalent low-
pass signal sl(t), it follows that the equivalent lowpass channel is described by the
time-variant impulse response

c(τ ; t) =
∑

n

αn(t)e− j2π fcτn (t)δ[τ − τn(t)] (13.1–5)

For some channels, such as the tropospheric scatter channel, it is more appropriate
to view the received signal as consisting of a continuum of multipath components. In
such a case, the received signal x(t) is expressed in the integral form

x(t) =
∫ ∞

−∞
α(τ ; t)s(t − τ )dτ (13.1–6)

where α(τ ; t) denotes the attenuation of the signal components at delay τ and at time
instant t . Now substitution for s(t) from Equation 13.1–1 into Equation 13.1–6 yields

x(t) = Re
{[∫ ∞

−∞
α(τ ; t)e− j2π fcτ sl(t − τ ) dτ

]
e j2π fct

}
(13.1–7)

Since the integral in Equation 13.1–7 represents the convolution of sl(t) with an equiv-
alent lowpass time-variant impulse response c(τ ; t), it follows that

c(τ ; t) = α(τ ; t)e− j2π fcτ (13.1–8)

where c(τ ; t) represents the response of the channel at time t due to an impulse applied at
time t −τ . Thus Equation 13.1–8 is the appropriate definition of the equivalent lowpass
impulse response when the channel results in continuous multipath and Equation 13.1–5
is appropriate for a channel that contains discrete multipath components.

Now let us consider the transmission of an unmodulated carrier at frequency fc.
Then sl(t) = 1 for all t , and, hence, the received signal for the case of discrete multipath,
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given by Equation 13.1–4, reduces to

rl(t) =
∑

n

αn(t)e− j2π fcτn (t)

=
∑

n

αn(t)e jθn (t)
(13.1–9)

where θn(t) = −2π fcτn(t). Thus, the received signal consists of the sum of a number
of time-variant vectors (phasors) having amplitudes αn(t) and phases θn(t). Note that
large dynamic changes in the medium are required for αn(t) to change sufficiently to
cause a significant change in the received signal. On the other hand, θn(t) will change
by 2π rad whenever τn changes by 1/ fc. But 1/ fc is a small number and, hence, θn

can change by 2π rad with relatively small motions of the medium. We also expect
the delays τn(t) associated with the different signal paths to change at different rates
and in an unpredictable (random) manner. This implies that the received signal rl(t) in
Equation 13.1–9 can be modeled as a random process. When there are a large number
of paths, the central limit theorem can be applied. That is, rl(t) may be modeled as a
complex-valued Gaussian random process. This means that the time-variant impulse
response c(τ ; t) is a complex-valued Gaussian random process in the t variable.

The multipath propagation model for the channel embodied in the received signal
rl(t), given in Equation 13.1–9, results in signal fading. The fading phenomenon is
primarily a result of the time variations in the phases {θn(t)}. That is, the randomly time
variant phases {θn(t)} associated with the vectors {αne jθn } at times result in the vectors
adding destructively. When that occurs, the resultant received signal rl(t) is very small
or practically zero. At other times, the vectors {αne jθn } add constructively, so that the
received signal is large. Thus, the amplitude variations in the received signal, termed
signal fading, are due to the time-variant multipath characteristics of the channel.

When the impulse response c(τ ; t) is modeled as a zero-mean complex-valued
Gaussian process, the envelope |c(τ ; t)| at any instant t is Rayleigh-distributed. In this
case the channel is said to be a Rayleigh fading channel. In the event that there are fixed
scatterers or signal reflectors in the medium, in addition to randomly moving scatterers,
c(τ ; t) can no longer be modeled as having zero-mean. In this case, the envelope |c(τ ; t)|
has a Rice distribution and the channel is said to be a Ricean fading channel. Another
probability distribution function that has been used to model the envelope of fading
signals is the Nakagami-m distribution. These fading channel models are considered
in Section 13.1–2.

13.1–1 Channel Correlation Functions and Power Spectra

We shall now develop a number of useful correlation functions and power spectral
density functions that define the characteristics of a fading multipath channel. Our
starting point is the equivalent lowpass impulse response c(τ ; t), which is characterized
as a complex-valued random process in the t variable. We assume that c(τ ; t) is wide-
sense-stationary. Then we define the autocorrelation function of c(τ ; t) as

Rc(τ2, τ1; �t) = E
[
c∗(τ1; t)c(τ2; t + �t)

]
(13.1–10)
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Rc(�) FIGURE 13.1–2
Multipath intensity profile.

In most radio transmission media, the attentuation and phase shift of the channel
associated with path delay τ1 is uncorrelated with the attenuation and phase shift asso-
ciated with path delay τ2. This is usually called uncorrelated scattering. We make the
assumption that the scattering at two different delays is uncorrelated and incorporate it
into Equation 13.1–10 to obtain

E
[
c∗(τ1; t)c(τ2; t + �t)

] = Rc(τ1; �t)δ(τ2 − τ1) (13.1–11)

If we let �t = 0, the resulting autocorrelation function Rc(τ ; 0) ≡ Rc(τ ) is simply
the average power output of the channel as a function of the time delay τ . For this
reason, Rc(τ ) is called the multipath intensity profile or the delay power spectrum of
the channel. In general, Rc(τ ; �t) gives the average power output as a function of the
time delay τ and the difference �t in observation time.

In practice, the function Rc(τ ; �t) is measured by transmitting very narrow pulses
or, equivalently, a wideband signal and cross-correlating the received signal with a
delayed version of itself. Typically, the measured function Rc(τ ) may appear as shown
in Figure 13.1–2. The range of values of τ over which Rc(τ ) is essentially nonzero is
called the multipath spread of the channel and is denoted by Tm .

A completely analogous characterization of the time-variant multipath channel
begins in the frequency domain. By taking the Fourier transform of c(τ ; t), we obtain
the time-variant transfer function C( f ; t), where f is the frequency variable. Thus,

C( f ; t) =
∫ ∞

−∞
c(τ ; t)e− j2π f τ dτ (13.1–12)

If c(τ ; t) is modeled as a complex-valued zero-mean Gaussian random process in the t
variable, it follows that C( f ; t) also has the same statistics. Under the assumption that
the channel is wide-sense-stationary, we define the autocorrelation function

RC ( f2, f1; �t) = E
[
C∗( f1; t)C( f2; t + �t)

]
(13.1–13)

Since C( f ; t) is the Fourier transform of c(τ ; t), it is not surprising to find that
RC ( f2, f1; �t) is related to Rc(τ ; �t) by the Fourier transform. The relationship is
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easily established by substituting Equation 13.1–12 into Equation 13.1–13. Thus,

RC ( f2, f1; �t) =
∫ ∞

−∞

∫ ∞

−∞
E

[
c∗(τ1; t)c(τ2; t + �t)

]
e j2π ( f1τ1− f2τ2)dτ1dτ2

=
∫ ∞

−∞

∫ ∞

−∞
Rc(τ1; �t)δ(τ2 − τ1)e j2π ( f1τ1− f2τ2)dτ1dτ2

=
∫ ∞

−∞
Rc(τ1; �t)e j2π ( f1− f2)τ1 dτ1

=
∫ ∞

−∞
Rc(τ1; �t)e− j2π� f τ1 dτ1 ≡ RC (� f ; �t) (13.1–14)

where � f = f2 − f1. From Equation 13.1–14, we observe that RC (� f ; �t) is the
Fourier transform of the multipath intensity profile. Furthermore, the assumption of
uncorrelated scattering implies that the autocorrelation function of C( f ; t) in frequency
is a function of only the frequency difference � f = f2 − f1. Therefore, it is appropri-
ate to call RC (� f ; �t) the spaced-frequency, spaced time correlation function of the
channel. It can be measured in practice by transmitting a pair of sinusoids separated by
� f and cross-correlating the two separately received signals with a relative delay �t .

Suppose we set �t = 0 in Equation 13.1–14. Then, with RC (� f ; 0) ≡ RC (� f )
and Rc(τ ; 0) ≡ Rc(τ ), the transform relationship is simply

RC (� f ) =
∫ ∞

−∞
Rc(τ )e− j2π� f τ dτ (13.1–15)

The relationship is depicted graphically in Figure 13.1–3. Since RC (� f ) is an auto-
correlation function in the frequency variable, it provides us with a measure of the
frequency coherence of the channel. As a result of the Fourier transform relationship
between RC (� f ) and Rc(τ ), the reciprocal of the multipath spread is a measure of the
coherence bandwidth of the channel. That is,

(� f )c ≈ 1

Tm
(13.1–16)

RC(� f )

RC(� f ) Rc(�)

Rc(�)

FIGURE 13.1–3
Relationship between RC (� f ) and Rc(τ ).
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where (� f )c denotes the coherence bandwidth. Thus, two sinusoids with frequency sep-
aration greater than (� f )c are affected differently by the channel. When an information-
bearing signal is transmitted through the channel, if (� f )c is small in comparison to
the bandwidth of the transmitted signal, the channel is said to be frequency-selective.
In this case, the signal is severely distorted by the channel. On the other hand, if (� f )c

is large in comparison with the bandwidth of the transmitted signal, the channel is said
to be frequency-nonselective.

We now focus our attention on the time variations of the channel as measured by
the parameter �t in RC (� f ; �t). The time variations in the channel are evidenced as
a Doppler broadening and, perhaps, in addition as a Doppler shift of a spectral line.
In order to relate the Doppler effects to the time variations of the channel, we define
the Fourier transform of RC (� f ; �t) with respect to the variable �t to be the function
SC (� f ; λ). That is,

SC (� f ; λ) =
∫ ∞

−∞
RC (� f ; �t)e− j2πλ �t d�t (13.1–17)

With � f set to zero and SC (0; λ) ≡ SC (λ), the relation in Equation 14.1–17 becomes

SC (λ) =
∫ ∞

−∞
RC (0; �t)e− j2πλ �t d�t (13.1–18)

The function SC (λ) is a power spectrum that gives the signal intensity as a function
of the Doppler frequency λ. Hence, we call SC (λ) the Doppler power spectrum of the
channel.

From Equation 13.1–18, we observe that if the channel is time-invariant, RC (�t) =
1 andSC (λ) becomes equal to the delta function δ(λ). Therefore, when there are no time
variations in the channel, there is no spectral broadening observed in the transmission
of a pure frequency tone.

The range of values of λ over which SC (λ) is essentially nonzero is called the
Doppler spread Bd of the channel. Since SC (λ) is related to RC (�t) by the Fourier
transform, the reciprocal of Bd is a measure of the coherence time of the channel. That
is,

(�t)c ≈ 1

Bd
(13.1–19)

where (�t)c denotes the coherence time. Clearly, a slowly changing channel has a large
coherence time or, equivalently, a small Doppler spread. Figure 13.1–4 illustrates the
relationship between RC (�t) and SC (λ).

We have now established a Fourier transform relationship between RC (� f ; �t)
and Rc(τ ; �t) involving the variables (τ, � f ), and a Fourier transform relationship
between RC (� f ; �t) and SC (� f ; λ) involving the variables (�t, λ). There are two
additional Fourier transform relationships that we can define, which serve to relate
Rc(τ ; �t) to SC (� f ; λ) and, thus, close the loop. The desired relationship is obtained
by defining a new function, denoted byS(τ ; λ), to be the Fourier transform of Rc(τ ; �t)
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RC(� t)

RC(� t)

S

S

FIGURE 13.1–4
Relationship between RC (�t) and SC (λ).

in the �t variable. That is,

S(τ ; λ) =
∫ ∞

−∞
Rc(τ ; �t)e− j2πλ �t d�t (13.1–20)

It follows that S(τ ; λ) and SC (� f ; λ) are a Fourier transform pair. That is,

S(τ ; λ) =
∫ ∞

−∞
SC (� f ; λ)e j2πτ � f d� f (13.1–21)

Furthermore, S(τ ; λ) and RC (� f ; �t) are related by the double Fourier transform

S(τ ; λ) =
∫ ∞

−∞

∫ ∞

−∞
RC (� f ; �t)e− j2πλ �t e j2πτ � f d�t d� f (13.1–22)

This new function S(τ ; λ) is called the scattering function of the channel. It provides
us with a measure of the average power output of the channel as a function of the time
delay τ and the Doppler frequency λ.

The relationships among the four functions RC (� f ; �t), Rc(τ ; �t), SC (� f ; λ),
and S(τ ; λ) are summarized in Figure 13.1–5.

E X A M P L E 13.1–1. SCATTERING FUNCTION OF A TROPOSPHERIC SCATTER CHANNEL.

The scattering function S(τ ; λ) measured on a 150-mi tropospheric scatter link is
shown in Figure 13.1–6. The signal used to probe the channel had a time resolution
of 0.1 μs. Hence, the time-delay axis is quantized in increments of 0.1 μs. From the
graph, we observe that the multipath spread Tm = 0.7 μs. On the other hand, the
Doppler spread, which may be defined as the 3-dB bandwidth of the power spectrum
for each signal path, appears to vary with each signal path. For example, in one path it is
less than 1 Hz, while in some other paths it is several hertz. For our purposes, we shall
take the largest of these 3-dB bandwidths of the various paths and call that the Doppler
spread.

E X A M P L E 13.1–2. MULTIPATH INTENSITY PROFILE OF MOBILE RADIO CHANNELS. The
multipath intensity profile of a mobile radio channel depends critically on the type of
terrain. Numerous measurements have been made under various conditions in many
parts of the world. In urban and suburban areas, typical values of multipath spreads
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RC(� f ; � t)

RC(� t) RC(� f )

Rc(�)S

S

S

S

FIGURE 13.1–5
Relationships among the channel correlation functions and power spectra. [From Green
(1962), with permission.]

range from 1 to 10 μs. In rural mountainous areas, the multipath spreads are much
greater, with typical values in the range of 10 to 30 μs. Two models for the multipath
intensity profile that are widely used in evaluating system performance for these two
types of terrain are illustrated in Figure 13.1–7.

E X A M P L E 13.1–3. DOPPLER POWER SPECTRUM OF MOBILE RADIO CHANNELS. A
widely used model for the Doppler power spectrum of a mobile radio channel is the so-
called Jakes’ model (Jakes, 1974). In this model, the autocorrelation of the time-variant
transfer function C( f ; t) is given as

RC (�t) = E[C∗( f ; t)C( f ; t + �t)]

= J0(2π fm �t)
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FIGURE 13.1–6
Scattering function of a medium-range tropospheric scatter channel. The taps delay increment
is 0.1 μs.

where J0(·) is the zero-order Bessel function of the first kind and fm = v f0/c is the
maximum Doppler frequency, where v is the vehicle speed in meters per second (m/s),
f0 is the carrier frequency, and c is the speed of light (3 × 108 m/s). The Fourier
transform of this autocorrelation function yields the Doppler power spectrum. That is

SC (λ) =
∫ ∞

−∞
RC (�t)e− j2πλ �t d�t

=
∫ ∞

−∞
J0(2π fm �t)e− j2πλ �t d�t

=
⎧⎨
⎩

1

π fm

1√
1 − ( f/ fm)2

| f | ≤ fm

0 | f | > fm

The graph of SC (λ) is shown in Figure 13.1–8.

13.1–2 Statistical Models for Fading Channels

There are several probability distributions that can be considered in attempting to model
the statistical characteristics of the fading channel. When there are a large number of
scatterers in the channel that contribute to the signal at the receiver, as is the case in
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(a)

(b)

FIGURE 13.1–7
Cost 207 average power delay profiles: (a) typical delay profile for suburban and urban areas;
(b) typical “bad”-case delay profile for hilly terrain. [From Cost 207 Document 207 TD (86)51
rev 3.]

S FIGURE 13.1–8
Model of Doppler spectrum for a mobile
radio channel.

ionospheric or tropospheric signal propagation, application of the central limit theorem
leads to a Gaussian process model for the channel impulse response. If the process is
zero-mean, then the envelope of the channel response at any time instant has a Rayleigh
probability distribution and the phase is uniformly distributed in the interval (0, 2π ).
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That is

pR(r ) = 2r

	
e−r2/	, r ≥ 0 (13.1–23)

where

	 = E(R2) (13.1–24)

We observe that the Rayleigh distribution is characterized by the single parameter
E(R2).

An alternative statistical model for the envelope of the channel response is the
Nakagami-m distribution given by the PDF in Equation 2.3–67. In contrast to the
Rayleigh distribution, which has a single parameter that can be used to match the fad-
ing channel statistics, the Nakagami-m is a two-parameter distribution, involving the
parameter m and the second moment 	 = E(R2). As a consequence, this distribution
provides more flexibility and accuracy in matching the observed signal statistics. The
Nakagami-m distribution can be used to model fading channel conditions that are either
more or less severe than the Rayleigh distribution, and it includes the Rayleigh distribu-
tion as a special case (m = 1). For example, Turin et al. (1972) and Suzuki (1977) have
shown that the Nakagami-m distribution provides the best fit for data signals received
in urban radio multipath channels.

The Rice distribution is also a two-parameter distribution. It may be expressed by
the PDF given in Equation 2.3–56, where the parameters are s and σ 2, where s2 is called
the noncentrality parameter in the equivalent chi-square distribution. It represents the
power in the nonfading signal components, sometimes called specular components, of
the received signal.

There are many radio channels in which fading is encountered that are basically line-
of-sight (LOS) communication links with multipath components arising from secondary
reflections, or signal paths, from surrounding terrain. In such channels, the number of
multipath components is small, and, hence, the channel may be modeled in a somewhat
simpler form. We cite two channel models as examples.

As the first example, let us consider an airplane to ground communication link in
which there is the direct path and a single multipath component at a delay t0 relative to
the direct path. The impulse response of such a channel may be modeled as

c(τ ; t) = αδ(τ ) + β(t)δ[τ − τ0(t)] (13.1–25)

where α is the attenuation factor of the direct path and β(t) represents the time-variant
multipath signal component resulting from terrain reflections. Often, β(t) can be charac-
terized as a zero-mean Gaussian random process. The transfer function for this channel
model may be expressed as

C( f ; t) = α + β(t)e− j2π f τ0(t) (13.1–26)

This channel fits the Ricean fading model defined previously. The direct path with
attenuation α represents the specular component and β(t) represents the Rayleigh fading
component.

A similar model has been found to hold for microwave LOS radio channels used
for long-distance voice and video transmission by telephone companies throughout the
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world. For such channels, Rummler (1979) has developed a three-path model based on
channel measurements performed on typical LOS links in the 6-GHz frequency band.
The differential delay on the two multipath components is relatively small, and, hence,
the model developed by Rummler is one that has a channel transfer function

C( f ) = α[1 − βe− j2π ( f − f0)τ0 ] (13.1–27)

where α is the overall attenuation parameter, β is called a shape parameter which is due
to the multipath components, f0 is the frequency of the fade minimum, and τ0 is the
relative time delay between the direct and the multipath components. This simplified
model was used to fit data derived from channel measurements.

Rummler found that the parameters α and β may be characterized as random
variables that, for practical purposes, are nearly statistically independent. From the
channel measurements, he found that the distribution of β has the form (1 − β)2.3.
The distribution of α is well modeled by the lognormal distribution, i.e., − log α is
Gaussian. For β > 0.5, the mean of −20 log α was found to be 25 dB and the standard
deviation was 5 dB. For smaller values of β, the mean decreases to 15 dB. The delay
parameter determined from the measurements was τ0 = 6.3 ns. The magnitude-square
response of C( f ) is

|C( f )|2 = α2[1 + β2 − 2β cos 2π ( f − f0)τ0] (13.1–28)

|C( f )| is plotted in Figure 13.1–9 as a function of the frequency f − f0 for τ0 = 6.3 ns.
Note that the effect of the multipath component is to create a deep attenuation at f = f0

and at multiples of 1/τ0 ≈ 159 MHz. By comparison, the typical channel bandwidth
is 30 MHz. This model was used by Lundgren and Rummler (1979) to determine the
error rate performance of digital radio systems.

Propagation models for mobile radio channels In the link budget calculations
that were described in Section 4.10–2, we had characterized the path loss of radio
waves propagating through free space as being inversely proportional to d2, where d
is the distance between the transmitter and the receiver. However, in a mobile radio

FIGURE 13.1–9
Magnitude frequency response of LOS channel model.
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channel, propagation is generally neither free space nor line of sight. The mean path
loss encountered in mobile radio channels may be characterized as being inversely
proportional to d p, where 2 ≤ p ≤ 4, with d4 being a worst-case model. Consequently,
the path loss is usually much more severe compared to that of free space.

There are a number of factors affecting the path loss in mobile radio communi-
cations. Among these factors are base station antenna height, mobile antenna height,
operating frequency, atmospheric conditions, and presence or absence of buildings and
trees. Various mean path loss models have been developed that incorporate such factors.
For example, a model for a large city in an urban area is the Hata model, in which the
mean path loss is expressed as

Loss in dB = 69.55 + 26.16 log10 f − 13.82 log10 ht − a(hr )

+ (44.9 − 6.55 log10 ht ) log10 d
(13.1–29)

where f is the operating frequency in MHz (150 < f < 1500), ht is the transmitter
antenna height in meters (30 < ht < 200), hr is the receiver antenna height in meters
(1 < hr < 10), d is the distance between transmitter and receiver in km (1 < d < 20),
and

a(hr ) = 3.2(log10 11.75hr )2 − 4.97, f ≥ 400 MHz (13.1–30)

Another problem with mobile radio propagation is the effect of shadowing of the
signal due to large obstructions, such as large buildings, trees, and hilly terrain between
the transmitter and the receiver. Shadowing is usually modeled as a multiplicative and,
generally, slowly time varying random process. That is, the received signal may be
characterized mathematically as

r (t) = A0g(t)s(t) (13.1–31)

where A0 represents the mean path loss, s(t) is the transmitted signal, and g(t) is a
random process that represents the shadowing effect. At any time instant, the shadowing
process is modeled statistically as lognormally distributed. The probability density
function for the lognormal distribution is

p(g) =
⎧⎨
⎩

1√
2πσ 2 g

e−(ln g−μ)2/2σ 2
(g ≥ 0)

0 (g < 0)
(13.1–32)

If we define a new random variable X as X = ln g, then

p(x) = 1√
2πσ 2

e−(x−μ)2/2σ 2
, −∞ < x < ∞ (13.1–33)

The random variable X represents the path loss measured in dB, μ is the mean path
loss in dB, and σ is the standard deviation of the path loss in dB. For typical cellular
and microcellular environments, σ is in the range of 5–12 dB.
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13.2
THE EFFECT OF SIGNAL CHARACTERISTICS ON THE CHOICE
OF A CHANNEL MODEL

Having discussed the statistical characterization of time-variant multipath channels
generally in terms of the correlation functions describe in Section 13.1, we now consider
the effect of signal characteristics on the selection of a channel model that is appropriate
for the specified signal. Thus, let sl(t) be the equivalent lowpass signal transmitted over
the channel and let Sl( f ) denote its frequency content. Then the equivalent lowpass
received signal, exclusive of additive noise, may be expressed either in terms of the
time-domain variables c(τ ; t) and sl(t) as

rl(t) =
∫ ∞

−∞
c(τ ; t)sl(t − τ ) dτ (13.2–1)

or in terms of the frequency functions C( f ; t) and Sl( f ) as

rl(t) =
∫ ∞

−∞
C( f ; t)Sl( f )e j2π f t d f (13.2–2)

Suppose we are transmitting digital information over the channel by modulating
(either in amplitude, or in phase, or both) the basic pulse sl(t) at a rate 1/T , where
T is the signaling interval. It is apparent from Equation 13.2–2 that the time-variant
channel characterized by the transfer function C( f ; t) distorts the signal Sl( f ). If
Sl( f ) has a bandwidth W greater than the coherence bandwidth (� f )c of the channel,
Sl( f ) is subjected to different gains and phase shifts across the band. In such a case,
the channel is said to be frequency-selective. Additional distortion is caused by the
time variations in C( f ; t). This type of distortion is evidenced as a variation in the
received signal strength, and has been termed fading. It should be emphasized that the
frequency selectivity and fading are viewed as two different types of distortion. The
former depends on the multipath spread or, equivalently, on the coherence bandwidth
of the channel relative to the transmitted signal bandwidth W . The latter depends on
the time variations of the channel, which are grossly characterized by the coherence
time (�t)c or, equivalently, by the Doppler spread Bd .

The effect of the channel on the transmitted signal sl(t) is a function of our choice of
signal bandwidth and signal duration. For example, if we select the signaling interval
T to satisfy the condition T 	 Tm , the channel introduces a negligible amount of
intersymbol interference. If the bandwidth of the signal pulse sl(t) is W ≈ 1/T , the
condition T 	 Tm implies that

W 
 1

Tm
≈ (� f )c (13.2–3)

That is, the signal bandwidth W is much smaller than the coherence bandwidth of the
channel. Hence, the channel is frequency-nonselective. In other words, all the frequency
components in Sl( f ) undergo the same attenuation and phase shift in transmission
through the channel. But this implies that, within the bandwidth occupied by Sl( f ),
the time-variant transfer function C( f ; t) of the channel is a complex-valued constant
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in the frequency variable. Since Sl( f ) has its frequency content concentrated in the
vicinity of f = 0, C( f ; t) = C(0; t). Consequently, Equation 13.2–2 reduces to

rl(t) = C(0; t)
∫ ∞

−∞
Sl( f )e j2π f t d f

= C(0; t)sl(t)

(13.2–4)

Thus, when the signal bandwidth W is much smaller than the coherence bandwidth
(� f )c of the channel, the received signal is simply the transmitted signal multiplied by
a complex-valued random process C(0; t), which represents the time-variant character-
istics of the channel. In this case, we say that the multipath components in the received
are not resolvable because W 
 (� f )c.

The transfer function C(0; t) for a frequency-nonselective channel may be ex-
pressed in the form

C(0; t) = α(t)e jφ(t) (13.2–5)

where α(t) represents the envelope and φ(t) represents the phase of the equivalent
lowpass channel. When C(0; t) is modeled as a zero-mean complex-valued Gaussian
random process, the envelope α(t) is Rayleigh-distributed for any fixed value of t and
φ(t) is uniformly distributed over the interval (−π, π ). The rapidity of the fading on
the frequency-nonselective channel is determined either from the correlation function
RC (�t) or from the Doppler power spectrumSC (λ). Alternatively, either of the channel
parameters (�t)c or Bd can be used to characterize the rapidity of the fading.

For example, suppose it is possible to select the signal bandwidth W to satisfy the
condition W 
 (� f )c and the signaling interval T to satisfy the condition T 
 (�t)c.
Since T is smaller than the coherence time of the channel, the channel attenuation and
phase shift are essentially fixed for the duration of at least one signaling interval. When
this condition holds, we call the channel a slowly fading channel. Furthermore, when
W ≈ 1/T , the conditions that the channel be frequency-nonselective and slowly fading
imply that the product of Tm and Bd must satisfy the condition Tm Bd < 1.

The product Tm Bd is called the spread factor of the channel. If Tm Bd < 1, the
channel is said to be underspread; otherwise, it is overspread. The multipath spread,
the Doppler spread, and the spread factor are listed in Table 13.2–1 for several channels.

TABLE 13.2–1

Multipath Spread, Doppler Spread, and Spread Factor for Several Time-Variant
Multipath Channels

Multipath duration, Doppler spread, Spread
Type of channel s Hz factor

Shortwave ionospheric propagation (HF) 10−3–10−2 10−1–1 10−4–10−2

Ionospheric propagation under distributed 10−3–10−2 10 –100 10−2–1
auroral conditions (HF)

Ionospheric forward scatter (VHF) 10−4 10 10−3

Tropospheric scatter (SHF) 10−6 10 10−5

Orbital scatter (X band) 10−4 103 10−1

Moon at max. libration ( f0 = 0.4 kmc) 10−2 10 10−1
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We observe from this table that several radio channels, including the moon when used
as a passive reflector, are underspread. Consequently, it is possible to select the signal
sl(t) such that these channels are frequency-nonselective and slowly fading. The slow-
fading condition implies that the channel characteristics vary sufficiently slowly that
they can be measured.

In Section 13.3, we shall determine the error rate performance for binary signaling
over a frequency-nonselective slowly fading channel. This channel model is, by far, the
simplest to analyze. More importantly, it yields insight into the performance character-
istics for digital signaling on a fading channel and serves to suggest the type of signal
waveforms that are effective in overcoming the fading caused by the channel.

Since the multipath components in the received signal are not resolvable when the
signal bandwidth W is less than the coherence bandwidth (� f )c of the channel, the
received signal appears to arrive at the receiver via a single fading path. On the other
hand, we may choose W 	 (� f )c, so that the channel becomes frequency-selective.
We shall show later that, under this condition, the multipath components in the received
signal are resolvable with a resolution in time delay of 1/W . Thus, we shall illustrate
that the frequency-selective channel can be modeled as a tapped delay line (transversal)
filter with time-variant tap coefficients. We shall then derive the performance of binary
signaling over such a frequency-selective channel model.

13.3
FREQUENCY-NONSELECTIVE, SLOWLY FADING CHANNEL

In this section, we derive the error rate performance of binary PSK and binary FSK when
these signals are transmitted over a frequency-nonselective, slowly fading channel. As
described in Section 13.2, the frequency-nonselective channel results in multiplicative
distortion of the transmitted signal sl(t). Furthermore, the condition that the channel
fades slowly implies that the multiplicative process may be regarded as a constant
during at least one signaling interval. Consequently, if the transmitted signal is sl(t),
the received equivalent lowpass signal in one signaling interval is

rl(t) = αe jφsl(t) + z(t), 0 ≤ t ≤ T (13.3–1)

where z(t) represents the complex-valued white Gaussian noise process corrupting the
signal.

Let us assume that the channel fading is sufficiently slow that the phase shift φ can
be estimated from the received signal without error. In that case, we can achieve ideal
coherent detection of the received signal. Thus, the received signal can be processed
by passing it through a matched filter in the case of binary PSK or through a pair of
matched filters in the case of binary FSK. One method that we can use to determine the
performance of the binary communication systems is to evaluate the decision variables
and from these determine the probability of error. However, we have already done
this for a fixed (time-invariant) channel. That is, for a fixed attenuation α, we know
the probability of error for binary PSK and binary FSK. From Equation 4.3–13, the
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expression for the error rate of binary PSK as a function of the received SNR γb is

Pb(γb) = Q
(√

2γb

)
(13.3–2)

where γb = α2Eb/N0. The expression for the error rate of binary FSK, detected coher-
ently, is given by Equation 4.2–32 as

Pb(γb) = Q
(√

γb

)
(13.3–3)

We view Equations 13.3–2 and 13.3–3 as conditional error probabilities, where the
condition is that α is fixed. To obtain the error probabilities when α is random, we must
average Pb(γb), given in Equations 13.3–2 and 13.3–3, over the probability density
function of γb. That is, we must evaluate the integral

Pb =
∫ ∞

0
Pb(γb)p(γb) dγb (13.3–4)

where p(γb) is the probability density function of γb when α is random.

Rayleigh fading When α is Rayleigh-distributed, α2 has a chi-square probabil-
ity distribution with two degrees of freedom. Consequently, γb also is chi-square-
distributed. It is easily shown that

p(γb) = 1

γ̄b
e−γb/γ̄b , γb ≥ 0 (13.3–5)

where γ b is the average signal-to-noise ratio, defined as

γ b = Eb

N0
E(α2) (13.3–6)

The term E(α2) is simply the average value of α2.
Now we can substitute Equation 13.3–5 into Equation 13.3–4 and carry out the

integration for Pb(γb) as given by Equations 13.3–2 and 13.3–3. The result of this
integration for binary PSK is (see Problems 4.44 and 4.50)

Pb = 1

2

(
1 −

√
γ b

1 + γ̄b

)
(13.3–7)

If we repeat the integration with Pb(γb) given by Equation 13.3–3, we obtain the
probability of error for binary FSK, detected coherently, in the form

Pb = 1

2

(
1 −

√
γ b

2 + γ̄b

)
(13.3–8)

In arriving at the error rate results in Equations 13.3–7 and 13.3–8, we have assumed
that the estimate of the channel phase shift, obtained in the presence of slow fading,
is noiseless. Such an ideal condition may not hold in practice. In such a case, the
expressions in Equations 13.3–7 and 13.3–8 should be viewed as representing the best
achievable performance in the presence of Rayleigh fading. In Appendix C we consider
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the problem of estimating the phase in the presence of noise and we evaluate the error
rate performance of binary and multiphase PSK.

On channels for which the fading is sufficiently rapid to preclude the estimation
of a stable phase reference by averaging the received signal phase over many signaling
intervals, DPSK, is an alternative signaling method. Since DPSK requires phase stability
over only two consecutive signaling intervals, this modulation technique is quite robust
in the presence of signal fading. In deriving the performance of binary DPSK for a
fading channel, we begin again with the error probability for a nonfading channel,
which is

Pb(γb) = 1
2 e−γb (13.3–9)

This expression is substituted into the integral in Equation 13.3–4 along with p(γb) ob-
tained from Equation 13.3–5. Evaluation of the resulting integral yields the probability
of error for binary DPSK, in the form

Pb = 1

2(1 + γ b)
(13.3–10)

If we choose not to estimate the channel phase shift at all, but instead employ a
noncoherent (envelope or square-law) detector with binary, orthogonal FSK signals,
the error probability for a nonfading channel is

Pb(γb) = 1
2 e−γb/2 (13.3–11)

When we average Pb(γb) over the Rayleigh fading channel attenuation, the resulting
error probability is

Pb = 1

2 + γ b
(13.3–12)

The error probabilities in Equations 13.3–7, 13.3–8, 13.3–10, and 13.3–12 are
illustrated in Figure 13.3–1. In comparing the performance of the four binary signaling
systems, we focus our attention on the probabilities of error for large SNR, i.e., γ b 	 1.
Under this condition, the error rates in Equations 13.3–7, 13.3–8, 13.3–10, and 13.3–12
simplify to

Pb ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/4γ b for coherent PSK
1/2γ b for coherent, orthogonal FSK
1/2γ b for DPSK
1/γ b for noncoherent, orthogonal FSK

(13.3–13)

From Equation 13.3–13, we observe that coherent PSK is 3 dB better than DPSK
and 6 dB better than noncoherent FSK. More striking, however, is the observtion that
the error rates decrease only inversely with SNR. In contrast, the decrease in error
rate on a nonfading channel is exponential with SNR. This means that, on a fading
channel, the transmitter must transmit a large amount of power in order to obtain a low
probability of error. In many cases, a large amount of power is not possible, technically
and/or economically. An alternative solution to the problem of obtaining acceptable
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FIGURE 13.3–1
Performance of binary signaling on a
Rayleigh fading channel.

performance on a fading channel is the use of redundancy, which can be obtained by
means of diversity techniques, as discussed in Section 13.4.

Nakagami fading If α is characterized statistically by the Nakagami-m distribu-
tion, the random variable γ = α2Eb/N0 has the PDF (see Problem 13.14)

p(γ ) = mm

�(m)γ m γ m−1e−mγ /γ (13.3–14)

where γ = E(α2)E/N0.
The average probability of error for any of the modulation methods is simply

obtained by averaging the appropriate error probability for a nonfading channel over
the fading signal statistics.

As an example of the performance obtained with Nakagami-m fading statistics,
Figure 13.3–2 illustrates the probability of error of binary PSK with m as a parameter.
We recall that m = 1 corresponds to Rayleigh fading. We observe that the performance
improves as m is increased above m = 1, which is indicative of the fact that the fading
is less severe. On the other hand, when m < 1, the performance is worse than Rayleigh
fading.

Other fading signal statistics Following the procedure describe above, one can
determine the performance of the various modulation methods for other types of fading
signal statistics, such as Ricean Fading.
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FIGURE 13.3–2
Average error probability for two-phase
PSK with Nakagami fading.

Error probability results for Rice-distributed fading statistics can be found in the
paper by Lindsey (1964), while for Nakagami-m fading statistics, the reader may refer
to the papers by Esposito (1967), Miyagaki et al. (1978), Charash (1979), Al-Hussaini
et al. (1985), and Beaulieu and Abu-Dayya (1991).

13.4
DIVERSITY TECHNIQUES FOR FADING MULTIPATH CHANNELS

Diversity techniques are based on the notion that errors occur in reception when the
channel attenuation is large, i.e., when the channel is in a deep fade. If we can sup-
ply to the receiver several replicas of the same information signal transmitted over
independently fading channels, the probability that all the signal components will fade
simultaneously is reduced considerably. That is, if p is the probability that any one
signal will fade below some critical value, then pL is the probability that all L inde-
pendently fading replicas of the same signal will fade below the critical value. There
are several ways in which we can provide the receiver with L independently fading
replicas of the same information-bearing signal.

One method is to employ frequency diversity. That is, the same information-bearing
signal is transmitted on L carriers, where the separation between successive carriers
equals or exceeds the coherence bandwidth (� f )c of the channel.

A second method for achieving L independently fading versions of the same
information-bearing signal is to transmit the signal in L different time slots, where
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the separation between successive time slots equals or exceeds the coherence time
(�t)c of the channel. This method is called time diversity.

Note that the fading channel fits the model of a bursty error channel. Furthermore,
we may view the transmission of the same information either at different frequencies or
in difference time slots (or both) as a simple form of repetition coding. The separation
of the diversity transmissions in time by (�t)c or in frequency by (� f )c is basically
a form of block-interleaving the bits in the repetition code in an attempt to break up
the error bursts and, thus, to obtain independent errors. Later in the chapter, we shall
demonstrate that, in general, repetition coding is wasteful of bandwidth when compared
with nontrivial coding.

Another commonly used method for achieving diversity employs multiple anten-
nas. For example, we may employ a single transmitting antenna and multiple receiving
antennas. The latter must be spaced sufficiently far apart that the multipath components
in the signal have significantly different propagation delays at the antennas. Usually a
separation of a few wavelengths is required between two antennas in order to obtain
signals that fade independently.

A more sophisticated method for obtaining diversity is based on the use of a
signal having a bandwidth much greater than the coherence bandwidth (� f )c of the
channel. Such a signal with bandwidth W will resolve the multipath components and,
thus, provide the receiver with several independently fading signal paths. The time
resolution is 1/W . Consequently, with a multipath spread of Tm seconds, there are
Tm W resolvable signal components. Since Tm ≈ 1/(� f )c, the number of resolvable
signal components may also be expressed as W/(� f )c. Thus, the use of a wideband
signal may be viewed as just another method for obtaining frequency diversity of order
L ≈ W/(� f )c. The optimum demodulator for processing the wideband signal will be
derived in Section 13.5. It is called a RAKE correlator or a RAKE matched filter and
was invented by Price and Green (1958).

There are other diversity techniques that have received some consideration in prac-
tice, such as angle-of-arrival diversity and polarization diversity. However, these have
not been as widely used as those described above.

13.4–1 Binary Signals

We shall now determine the error rate performance for a binary digital communication
system with diversity. We begin by describing the mathematical model for the com-
munication system with diversity. First of all, we assume that there are L diversity
channels, carrying the same information-bearing signal. Each channel is assumed to be
frequency-nonselective and slowly fading with Rayleigh-distributed envelope statistics.
The fading processes among the L diversity channels are assumed to be mutually statis-
tically independent. The signal in each channel is corrupted by an additive zero-mean
white Gaussian noise process. The noise processes in the L channels are assumed to be
mutually statistically independent, with identical autocorrelation functions. Thus, the
equivalent low-pass received signals for the L channels can be expressed in the form

rlk(t) = αke jφk skm(t) + zk(t), k = 1, 2, . . . , L , m = 1, 2 (13.4–1)
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where {αke jφk } represent the attenuation factors and phase shifts for the L channels,
skm(t) denotes the mth signal transmitted on the kth channel, and zk(t) denotes the
additive white Gaussian noise on the kth channel. All signals in the set {skm(t)} have
the same energy.

The optimum demodulator for the signal received from the kth channel consists of
two matched filters, one having the impulse response

bk1(t) = s∗
k1(T − t) (13.4–2)

and the other having the impulse response

bk2(t) = s∗
k2(T − t) (13.4–3)

Of course, if binary PSK is the modulation method used to transmit the information, then
sk1(t) = −sk2(t). Consequently, only a single matched filter is required for binary PSK.
Following the matched filters is a combiner that forms the two decision variables. The
combiner that achieves the best performance is one in which each matched filter output
is multiplied by the corresponding complex-valued (conjugate) channel gain αke− jφk .
The effect of this multiplication is to compensate for the phase shift in the channel
and to weight the signal by a factor that is proportional to the signal strength. Thus,
a strong signal carries a larger weight than a weak signal. After the complex-valued
weighting operation is performed, two sums are formed. One consists of the real parts
of the weighted outputs from the matched filters corresponding to a transmitted 0. The
second consists of the real part of the outputs from the matched filters corresponding
to a transmitted 1. This optimum combiner is called a maximal ratio combiner by
Brennan (1959). Of course, the realization of this optimum combiner is based on the
assumption that the channel attenuations {αk} and the phase shifts {φk} are known
perfectly. That is, the estimates of the parameters {αk} and {φk} contain no noise. (The
effect of noisy estimates on the error rate performance of multiphase PSK is considered
in Appendix C.)

A block diagram illustrating the model for the binary digital communication system
described above is shown in Figure 13.4–1.

Let us first consider the performance of binary PSK with Lth-order diversity. The
output of the maximal ratio combiner can be expressed as a single decision variable in
the form

U = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αk Nk

)

= 2E
L∑

k=1

α2
k +

L∑
k=1

αk Nkr

(13.4–4)

where Nkr denotes the real part of the complex-valued Gaussian noise variable

Nk = e− jφk

∫ T

0
zk(t)s∗

k (t) dt (13.4–5)

We follow the approach used in Section 13.3 in deriving the probability of error. That is,
the probability of error conditioned on a fixed set of attenuation factors {αk} is obtained
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FIGURE 13.4–1
Model of binary digital communication system with diversity.

first. Then the conditional probability of error is averaged over the probability density
function of the {αk}.

Rayleigh fading For a fixed set of {αk} the decision variable U is Gaussian with
mean

E(U ) = 2E
L∑

k=1

α2
k (13.4–6)

and variance

σ 2
U = 2EN0

L∑
k=1

α2
k (13.4–7)

For these values of the mean and variance, the probability that U is less than zero is
simply

Pb(γb) = Q
(√

2γb

)
(13.4–8)

where the SNR per bit, γb, is given as

γb = E
N0

L∑
k=1

α2
k

=
L∑

k=1

γk

(13.4–9)

where γk = Eα2
k/N0 is the instantaneous SNR on the kth channel. Now we must de-

termine the probability density function p(γb). This function is most easily determined
via the characteristic function of γb. First of all, we note that for L = 1, γb ≡ γ1 has
a chi-square probability density function given in Equation 13.3–5. The characteristic
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function of γ1 is easily shown to be

�γ1 (v) = E(e jvγ1 )

= 1

1 − jvγ c

(13.4–10)

where γ c is the average SNR per channel, which is assumed to be identical for all
channels. That is,

γ c = E
N0

E(α2
k ) (13.4–11)

independent of k. This assumption applies for the results throughout this section. Since
the fading on the L channels is mutually statistically independent, the {γk} are statisti-
cally independent, and, hence, the characteristic function for the sum γb is simply the
result in Equation 13.4–10 raised to the Lth power, i.e.,

�γb (v) = 1

(1 − jvγ c)L
(13.4–12)

But this is the characteristic function of a chi-square-distributed random variable with
2L degrees of freedom. It follows from Equation 2.3–21 that the probability density
function p(γb) is

p(γb) = 1

(L − 1)!γ L
c

γ L−1
b e−γb/ γ c (13.4–13)

The final step in this derivation is to average the conditional error probability given
in Equation 13.4–8 over the fading channel statistics. Thus, we evaluate the integral

Pb =
∫ ∞

0
P2(γb)p(γb) dγb (13.4–14)

There is a closed-form solution for Equation 13.4–14, which can be expressed as

Pb = [ 1
2 (1 − μ)

]L
L−1∑
k=0

(
L − 1 + k

k

) [ 1
2 (1 + μ)

]k
(13.4–15)

where, by definition

μ =
√

γ c

1 + γ c
(13.4–16)

When the average SNR per channel, γ c, satisfies the condition γ c 	 1, the term
1
2 (1 + μ) ≈ 1 and the term 1

2 (1 − μ) ≈ 1/4γ c. Furthermore,

L−1∑
k=0

(
L − 1 + k

k

)
=

(
2L − 1

L

)
(13.4–17)
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Therefore, when γ c is sufficiently large (greater than 10 dB), the probability of error
in Equation 13.4–15 can be approximated as

Pb ≈
(

1

4γ c

)L (
2L − 1

L

)
(13.4–18)

We observe from Equation 13.4–18 that the probability of error varies as 1/γ c raised to
the Lth power. Thus, with diversity, the error rate decreases inversely with the Lth power
of the SNR.

Having obtained the performance of binary PSK with diversity, we now turn our
attention to binary, orthogonal FSK that is detected coherently. In this case, the two
decision variables at the output of the maximal ratio combiner may be expressed as

U1 = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αk Nk1

)

U2 = Re

(
L∑

k=1

αk Nk2

) (13.4–19)

where we have assumed that signal sk1(t) was transmitted and where {Nk1} and {Nk2}
are the two sets of noise components at the output of the matched filters. The probability
of error is simply the probability that U2 > U1. This computation is similar to the one
performed for PSK, except that we now have twice the noise power. Consequently,
when the {αk} are fixed, the conditional probability of error is

Pb(γb) = Q
(√

γb
)

(13.4–20)

We use Equation 13.4–13 to average Pb(γb) over the fading. It is not surprising to find
that the result given in Equation 13.4–15 still applies, with γ c replaced by 1

2γ c. That is,
Equation 13.4–15 is the probability of error for binary, orthogonal FSK with coherent
detection, where the parameter μ is defined as

μ =
√

γ c

2 + γ c
(13.4–21)

Furthermore, for large values of γ c, the performance Pb can be approximated as

Pb ≈
(

1

2γ c

)L (
2L − 1

L

)
(13.4–22)

In comparing Equation 13.4–22 with Equation 13.4–18, we observe that the 3-dB
difference in performance between PSK and orthogonal FSK with coherent detection,
which exists in a nonfading, nondispersive channel, is the same also in a fading channel.

In the above discussion of binary PSK and FSK, detected coherently, we assumed
that noiseless estimates of the complex-valued channel parameters {αke jφk } were used
at the receiver. Since the channel is time-variant, the parameters {αke jφk } cannot be
estimated perfectly. In fact, on some channels, the time variations may be sufficiently
fast to preclude the implementation of coherent detection. In such a case, we should
consider using either DPSK or FSK with noncoherent detection.
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Let us consider DPSK first. In order for DPSK to be a viable digital signaling
method, the channel variations must be sufficiently slow so that the channel phase
shifts {φk} do not change appreciably over two consecutive signaling intervals. In our
analysis, we assume that the channel parameters {αke jφk } remain constant over two
successive signaling intervals. Thus the combiner for binary DPSK will yield as an
output the decision variable

U = Re

[
L∑

k=1

(
2Eαke jφk + Nk2

) (
2Eαke− jφk + N ∗

k1

)]
(13.4–23)

where {Nk1} and {Nk2} denote the received noise components at the output of the
matched filters in the two consecutive signaling intervals. The probability of error is
simply the probability that U < 0. Since U is a special case of the general quadratic form
in complex-valued Gaussian random variables treated in Appendix B, the probability
of error can be obtained directly from the results given in that appendix. Alternatively,
we may use the error probability given in Equation 11.1–13, which applies to binary
DPSK transmitted over L time-invariant channels, and average it over the Rayleigh
fading channel statistics. Thus, we have the conditional error probability

Pb(γb) = ( 1
2 )2L−1e−γb

L−1∑
k=0

bkγ
k
b (13.4–24)

where γb is given by Equation 13.4–9 and

bk = 1

k!

L−1−k∑
n=0

(
2L − 1

n

)
(13.4–25)

The average of Pb(γb) over the fading channel statistics given by p(γb) in Equa-
tion 13.4–13 is easily shown to be

Pb = 1

22L−1(L − 1)!(1 + γ c)L

L−1∑
k=0

bk(L − 1 + k)!
(

γ c

1 + γ c

)k

(13.4–26)

We indicate that the result in Equation 13.4–26 can be manipulated into the form given
in Equation 13.4–15, which applies also to coherent PSK and FSK. For binary DPSK,
the parameter μ in Equation 13.4–15 is defined as (see Appendix C)

μ = γ c

1 + γ c
(13.4–27)

For γ c 	 1, the error probability in Equation 13.4–26 can be approximated by the
expression

Pb ≈
(

1

2γ c

)L (
2L − 1

L

)
(13.4–28)

Orthogonal FSK with noncoherent detection is the final signaling technique that
we consider in this section. It is appropriate for both slow and fast fading. However,
the analysis of the performance presented below is based on the assumption that the
fading is sufficiently slow so that the channel parameters {αke jφk } remain constant for
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the duration of the signaling interval. The combiner for the multichannel signals is a
square-law combiner. Its output consists of the two decision variables

U1 =
L∑

k=1

|2Eαke jφk + Nk1|2

U2 =
L∑

k=1

|Nk2|2
(13.4–29)

where U1 is assumed to contain the signal. Consequently the probability of error is the
probability that U2 > U1.

As in DPSK, we have a choice of two approaches in deriving the performance of
FSK with square-law combining. In Section 11.1, we indicated that the expression for
the error probability for square-law-combined FSK is the same as that for DPSK with
γb replaced by 1

2γb. That is, the FSK system requires 3 dB of additional SNR to achieve
the same performance on a time-invariant channel. Consequently, the conditional error
probability for DPSK given in Equation 13.4–24 applies to square-law-combined FSK
when γb is replaced by 1

2γb. Furthermore, the result obtained by averaging Equa-
tion 13.4–24 over the fading, which is given by Equation 13.4–26, must also apply to
FSK with γ c replaced by 1

2γ c. But we also stated previously that Equations 13.4–26
and 13.4–15 are equivalent. Therefore, the error probability given in Equation 13.4–15
also applies to square-law-combined FSK with the parameter μ defined as

μ = γ c

2 + γ c
(13.4–30)

An alternative derivation used by Pierce (1958) to obtain the probability that the
decision variable U2 > U1 is just as easy as the method described above. It begins with
the probability density functions p(u1) and p(u2). Since the complex-valued random
variables {αke jφk }, {Nk1}, and {Nk2} are zero-mean Gaussian-distributed, the decision
variables U1 and U2 are distributed according to a chi-square probability distribution
with 2L degrees of freedom. That is,

p(u1) = 1

(2σ 2
1 )L (L − 1)!

uL−1
1 exp

(
− u1

2σ 2
1

)
(13.4–31)

where

σ 2
1 = 1

2 E
(|2Eαke− jφk + Nk1|2

)
= 2EN0(1 + γ c)

Similarly,

p(u2) = 1(
2σ 2

2

)
(L − 1)!

uL−1
2 exp

(
− u2

2σ 2
2

)
(13.4–32)

where

σ 2
2 = 2EN0



Proakis-27466 book September 26, 2007 22:59

858 Digital Communications

The probability of error is just the probability that U2 > U1. It is left as an exercise
for the reader to show that this probability is given by Equation 13.4–15, where μ is
defined by Equation 13.4–30.

When γ c 	 1, the performance of square-law-detected FSK can be simplified as
we have done for the other binary multichannel systems. In this case, the error rate is
well approximated by the expression

Pb ≈
(

1

γ c

)L (
2L − 1

L

)
(13.4–33)

The error rate performance of PSK, DPSK, and square-law-detected orthogonal
FSK is illustrated in Figure 13.4–2 for L = 1, 2, and 4. The performance is plotted as
a function of the average SNR per bit, γ b, which is related to the average SNR per
channel, γ c, by the formula

γ b = Lγ c (13.4–34)

FIGURE 13.4–2
Performance of binary signals with diversity.
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The results in Figure 13.4–2 clearly illustrate the advantage of diversity as a means for
overcoming the severe penalty in SNR caused by fading.

Nakagami fading It is a simple matter to extend the results of this section to
other fading models. We shall briefly consider Nakagami fading. Let us compare the
Nakagami PDF for the single-channel SNR parameter γb = α2Eb/N0, previously given
by Equation 13.3–14 as

p(γb) = 1

�(m)(γ b/m)m
γ m−1

b e−γb/(γ b/m) (13.4–35)

with the PDF p(γb) obtained for the L-channel SNR with Rayleigh fading, given by
Equation 13.4–13 as

p(γb) = 1

(L − 1)!γ L
c

γ L−1
b e−γb/γ c (13.4–36)

By noting that γ c = γ b/L in the case of an Lth order diversity system, it is clear
that the two PDFs are identical for L = m = integer. When L = m = 1, the two
PDFs correspond to a single channel Rayleigh fading system. For the case in which
the Nakagami parameter m = 2, the performance of the single-channel system is
identical to the performance obtained in a Rayleigh fading channel with dual (L = 2)
diversity. More generally, any single-channel system with Nakagami fading in which
the parameter m is an integer, is equivalent to an L-channel diversity system for a
Rayleigh fading channel. In view of this equivalence, the characteristic function of a
Nakagami-m random variable must be of the form

�γb (v) = 1

(1 − jvγ b/m)m
(13.4–37)

which is consistent with the result given in Equation 13.4–12 for the characteristic
function of the combined signal in a system with Lth-order diversity in a Rayleigh
fading channel. Consequently, it follows that a K -channel system transmitting in a
Nakagami fading channel with independent fading is equivalent to an L = K m channel
diversity in a Rayleigh fading channel.

13.4–2 Multiphase Signals

Multiphase signaling over a Rayleigh fading channel is the topic presented in some
detail in Appendix C. Our main purpose in this section is to cite the general result for
the probability of a symbol error in M-ary PSK and DPSK systems and the probability
of a bit error in four-phase PSK and DPSK.
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The general result for the probability of a symbol error in M-ary PSK and DPSK is

Pe = (−1)L−1(1 − μ2)L

π (L − 1)!

(
∂ L−1

∂bL−1

{
1

b − μ2

[
π

M
(M − 1)

− μ sin(π/M)√
b − μ2 cos2(π/M)

cot−1 −μ cos(π/M)√
b − μ2 cos2(π/M)

]})
b=1

(13.4–38)

where

μ =
√

γ c

1 + γ c
(13.4–39)

for coherent PSK and

μ = γ c

1 + γ c
(13.4–40)

for DPSK. Again γ c is the average received SNR per channel. The SNR per bit is
γ b = Lγ c/k, where k = log2 M .

The bit error rate for four-phase PSK and DPSK is derived on the basis that the
pair of information bits is mapped into the four phases according to a Gray code. The
expression for the bit error rate derived in Appendix C is

Pb = 1

2

⎡
⎣1 − μ√

2 − μ2

L−1∑
k=0

(
2k
k

) (
1 − μ2

4 − 2μ2

)k
⎤
⎦ (13.4–41)

where μ is again given by Equations 13.4–39 and 13.4–40 for PSK and DPSK,
respectively.

Figure 13.4–3 illustrates the probability of a symbol error of DPSK and coherent
PSK for M = 2, 4, and 8 with L = 1. Note that the difference in performance between
DPSK and coherent PSK is approximately 3 dB for all three values of M . In fact, when
γ b 	 1 and L = 1, Equation 13.4–38 is well approximated as

Pe ≈ M − 1

(M log2 M)[sin2(π/M)]γ b

(13.4–42)

for DPSK and as

Pe ≈ M − 1

(M log2 M)[sin2(π/M)]2γ b

(13.4–43)

for PSK. Hence, at high SNR, coherent PSK is 3 dB better than DPSK on a Rayleigh
fading channel. This difference also holds as L is increased.

Bit error probabilities are depicted in Figure 13.4–4 for two-phase, four-phase,
and eight-phase DPSK signaling with L = 1, 2, and 4. The expression for the bit
error probability of eight-phase DPSK with Gray encoding is not given here, but it is
available in the paper by Proakis (1968). In this case, we observe that the performances
for two- and four-phase DPSK are (approximately) the same, while that for eight-phase
DPSK is about 3 dB poorer. Although we have not shown the bit error probability for
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FIGURE 13.4–3
Probability of symbol error for PSK and DPSK for Rayleigh fading.

coherent PSK, it can be demonstrated that two- and four-phase coherent PSK also yield
approximately the same performance.

13.4–3 M-ary Orthogonal Signals

In this subsection, we determine the performance of M-ary orthogonal signals trans-
mitted over a Rayleigh fading channel and we assess the advantages of higher-order
signal alphabets relative to a binary alphabet. The orthogonal signals may be viewed as
M-ary FSK with a minimum frequency separation of an integer multiple of 1/T , where
T is the signaling interval. The same information-bearing signal is transmitted on L
diversity channels. Each diversity channel is assumed to be frequency-nonselective and
slowly fading, and the fading processes on the L channels are assumed to be mutually
statistically independent. An additive white Gaussian noise process corrupts the signal
on each diversity channel. We assume that the additive noise processes are mutually
statistically independent.
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FIGURE 13.4–4
Probability of a bit error for DPSK with diversity for Rayleigh fading.

Although it is relatively easy to formulate the structure and analyze the performance
of a maximal ratio combiner for the diversity channels in the M-ary communication
system, it is more likely that a practical system would employ noncoherent detection.
Consequently, we confine our attention to square-law combining of the diversity signals.
The output of the combiner containing the signal is

U1 =
L∑

k=1

|2Eαke jφk + Nk1|2 (13.4–44)

while the outputs of the remaining M − 1 combiners are

Um =
L∑

k=1

|Nkm |2, m = 2, 3, 4, . . . , M (13.4–45)

The probability of error is simply 1 minus the probability that U1 > Um for m =
2, 3, . . . , M . Since the signals are orthogonal and the additive noise processes are mu-
tually statistically independent, the random variables U1, U2, . . . , UM are also mutually
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statistically independent. The probability density function of U1 was given in Equa-
tion 13.4–31. On the other hand, U2, . . . , UM are identically distributed and described
by the marginal probability density function in Equation 13.4–32. With U1 fixed, the
joint probability P(U2 < U1, U3 < U1, . . . , Um < U1) is equal to P(U2 < U1) raised
to the M − 1 power. Now,

P(U2 < U1 | U1 = u1) =
∫ u1

0
p(u2) du2

= 1 − exp
(

− u1

2σ 2
2

) L−1∑
k=0

1

k!

(
u1

2σ 2
2

)k (13.4–46)

where σ 2
2 = 2EN0. The M − 1 power of this probability is then averaged over the

probability density function of U1 to yield the probability of a correct decision. If we
subtract this result from unity, we obtain the probability of error in the form given by
Hahn (1962)

Pe = 1 −
∫ ∞

0

1(
2σ 2

1

)L
(L − 1)!

uL−1
1 exp

(
− u1

2σ 2
1

)

×
[

1 − exp
(

− u1

2σ 2
2

) L−1∑
k=0

1

k!

(
u1

2σ 2
2

)k
]M−1

du1

= 1 −
∫ ∞

0

1

(1 + γ c)L (L − 1)!
uL−1

1 exp
(

− u1

1 + γ c

)

×
(

1 − e−u1

L−1∑
k=0

uk
1

k!

)M−1

du1

(13.4–47)

where γ c is the average SNR per diversity channel. The average SNR per bit is γ b =
Lγ c/ log2 M = Lγ c/k.

The integral in Equation 13.4–47 can be expressed in closed form as a double
summation. This can be seen if we write

(
L−1∑
k=0

uk
1

k!

)m

=
m(L−1)∑

k=0

βkmuk
1 (13.4–48)

where βkm is the set of coefficients in the above expansion. Then it follows that Equa-
tion 13.4–47 reduces to

Pe = 1

(L − 1)!

M−1∑
m=1

(−1)m+1

(
M − 1

m

)

(1 + m + mγ c)L

×
m(L−1)∑

k=0

βkm(L − 1 + k)!
(

1 + γ c

1 + m + mγ c

)k
(13.4–49)
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When there is no diversity (L = 1), the error probability in Equation 13.4–49 reduces
to the simple form

Pe =
M−1∑
m=1

(−1)m+1

(
M − 1

m

)

1 + m + mγ c
(13.4–50)

The symbol error rate Pe may be converted to an equivalent bit error rate by multiplying
Pe with 2k−1/(2k − 1).

Although the expression for Pe given in Equation 13.4–49 is in closed form, it is
computationally cumbersome to evaluate for large values of M and L . An alternative
is to evaluate PM by numerical integration using the expression in Equation 13.4–47.
The results illustrated in the following graphs were generated from Equation 13.4–47.

First of all, let us observe the error rate performance of M-ary orthogonal signaling
with square-law combining as a function of the order of diversity. Figures 13.4–5 and
13.4–6 illustrate the characteristics of Pe for M = 2 and 4 as a function of L when the
total SNR, defined as γ t = Lγ c, remains fixed. These results indicate that there is an
optimum order of diversity for each γ t . That is, for any γ t , there is a value of L for
which Pe is a minimum. A careful observation of these graphs reveals that the minimum

P
e

FIGURE 13.4–5
Performance of square-law-detected
binary orthogonal signals as a function
of diversity.
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P
e

FIGURE 13.4–6
Performance of square-law-detected
M = 4 orthogonal signals as a
function of diversity.

in Pe is obtained when γ c = γ t/L ≈ 3. This result appears to be independent of the
alphabet size M .

Second, let us observe the error rate Pe as a function of the average SNR per bit,
defined as γ b = Lγ c/k. (If we interpret M-ary orthogonal FSK as a form of coding
and the order of diversity as the number of times a symbol is repeated in a repetition
code, then γ b = γ c/Rc, where Rc = k/L is the code rate.) The graphs of Pe versus
γ b for M = 2, 4, 8, 16, 32 and L = 1, 2, 4 are shown in Figure 13.4–7. These results
illustrate the gain in performance as M increases and L increases. First, we note that a
significant gain in performance is obtained by increasing L . Second, we note that the
gain in performance obtained with an increase in M is relatively small when L is small.
However, as L increases, the gain achieved by increasing M also increases. Since an
increase in either parameter results in an expansion of bandwidth, i.e.,

Be = L M

log2 M
(13.4–51)

the results illustrated in Figure 13.4–7 indicate that an increase in L is more efficient than
a corresponding increase in M . As we shall see in Chapter 14, coding is a bandwidth-
effective means for obtaining diversity in the signal transmitted over the fading channel.
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P
e

FIGURE 13.4–7
Performance of orthogonal signaling with M and L as parameters.

Chernov bound Before concluding this section, we develop a Chernov upper
bound on the error probability of binary orthogonal signaling with Lth-order diver-
sity, which will be useful in our discussion of coding for fading channels, the topic
of Chapter 14. Our starting point is the expression for the two decision variables U1

and U2 given by Equation 13.4–29, where U1 consists of the square-law-combined
signal-plus-noise terms and U2 consists of square-law-combined noise terms. The bi-
nary probability of error, denoted here by Pb(L), is

Pb(L) = P(U2 − U1 > 0)

= P(X > 0) =
∫ ∞

0
p(x) dx

(13.4–52)

where the random variable X is defined as

X = U2 − U1 =
L∑

k=1

(|Nk2|2 − |2Eαk + Nk1|2
)

(13.4–53)
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The phase terms {φk} in U1 have been dropped since they do not affect the performance
of the square-law detector.

Using the Chernov bound, the error probability in 13.4–52 can be expressed in the
form

Pb(L) ≤ E(eζ X ) (13.4–54)

where the parameter ζ > 0 is optimized to yield a tight bound. Upon substituting for
the random variable X from Equation 13.4–53 and noting that the random variables in
the summation are mutually statistically independent, we obtain the result

Pb(L) ≤
L∏

k=1

E
(

eζ |Nk2|2
)

E
(

e−ζ |2Eαk+Nk1|2
)

(13.4–55)

But

E
(

eζ |Nk2|2
)

= 1

1 − 2ζσ 2
2

, ζ <
1

2σ 2
2

(13.4–56)

and

E
(

e−ζ |2Eαk+Nk1|2
)

= 1

1 + 2ζσ 2
1

, ζ >
−1

2σ 2
1

(13.4–57)

where σ 2
2 = 2EN0, σ 2

1 = 2EN0(1 + γ c), and γ c is the average SNR per diversity
channel. Note that σ 2

1 and σ 2
2 are independent of k, i.e., the additive noise terms on

the L diversity channels as well as the fading statistics are identically distributed.
Consequently, Equation 13.4–55 reduces to

Pb(L) ≤
[

1(
1 − 2ζσ 2

2

) (
1 + 2ζσ 2

1

)
]L

, 0 ≤ ζ ≤ 1

2σ 2
2

(13.4–58)

By differentiating the right-hand side of Equation 13.4–58 with respect to ζ , we
find that the upper bound is minimized when

ζ = σ 2
1 − σ 2

2

4σ 2
1 σ 2

2

(13.4–59)

Substitution of Equation 13.4–59 for ζ into Equation 13.4–58 yields the Chernov upper
bound in the form

Pb(L) ≤
[

4(1 + γ c)

(2 + γ c)2

]L

(13.4–60)

It is interesting to note that Equation 13.4–60 may also be expressed as

Pb(L) ≤ [4p(1 − p)]L (13.4–61)
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Chernov bound

Chernov

Chernov bound

FIGURE 13.4–8
Comparison of Chernov bound with exact
error probability.

where p = 1/(2 + γ c) is the probability of error for binary orthogonal signaling on a
fading channel without diversity.

A comparison of the Chernov bound in Equation 13.4–60 with the exact error
probability for binary orthogonal signaling and square-law combining of the L diversity
signals, which is given by the expression

Pb(L) =
(

1

2 + γ c

)L L−1∑
k=0

(
L − 1 + k

k

) (
1 + γ c

2 + γ c

)k

= pL
L−1∑
k=0

(
L − 1 + k

k

)
(1 − p)k

(13.4–62)

reveals the tightness of the bound. Figure 13.4–8 illustrates this comparison. We observe
that the Chernov upper bound is approximately 6 dB from the exact error probability
for L = 1, but, as L increases, it becomes tighter. For example, the difference between
the bound and the exact error probability is about 2.5 dB when L = 4.

Finally we mention that the error probability for M-ary orthogonal signaling with
diversity can be upper-bounded by means of the union bound

Pe ≤ (M − 1)P2(L) (13.4–63)

where we may use either the exact expression given in Equation 13.4–62 or the Chernov
bound in Equation 13.4–60 for Pb(L).
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13.5
SIGNALING OVER A FREQUENCY-SELECTIVE, SLOWLY FADING
CHANNEL: THE RAKE DEMODULATOR

When the spread factor of the channel satisfies the condition Tm Bd 
 1, it is possible to
select signals having a bandwidth W 
 (� f )c and a signal duration T 
 (�t)c. Thus,
the channel is frequency-nonselective and slowly fading. In such a channel, diversity
techniques can be employed to overcome the severe consequences of fading.

When a bandwidth W 	 (� f )c is available to the user, the channel can be subdi-
vided into a number of frequency-division multiplexed (FDM) subchannels having a
mutual separation in center frequencies of at least (� f )c. Then the same signal can be
transmitted on the FDM subchannels, and, thus, frequency diversity is obtained. In this
section, we describe an alternative method.

13.5–1 A Tapped-Delay-Line Channel Model

As we shall now demonstrate, a more direct method for achieving basically the same
results is to employ a wideband signal covering the bandwidth W . The channel is
still assumed to be slowly fading by virtue of the assumption that T 
 (�t)c. Now
suppose that W is the bandwidth occupied by the real band-pass signal. Then the
band occupancy of the equivalent low-pass signal sl(t) is | f | ≤ 1

2 W . Since sl(t) is
band-limited to | f | ≤ 1

2 W , application of the sampling theorem results in the signal
representation

sl(t) =
∞∑

n=−∞
sl

(
n

W

)
sin[πW (t − n/W )]

πW (t − n/W )
(13.5–1)

The Fourier transform of sl(t) is

Sl( f ) =

⎧⎪⎨
⎪⎩

1

W

∞∑
n=−∞

sl(n/W )e− j2π fn/W | f | ≤ 1
2 W

0 | f | > 1
2 W

(13.5–2)

The noiseless received signal from a frequency-selective channel was previously
expressed in the form

rl(t) =
∫ ∞

−∞
C( f ; t)Sl( f )e j2π f t d f (13.5–3)



Proakis-27466 book September 26, 2007 22:59

870 Digital Communications

where C( f ; t) is the time-variant transfer function. Substitution for Sl( f ) from Equa-
tion 13.5–2 into 13.5–3 yields

rl(t) = 1

W

∞∑
n=−∞

sl(n/W )
∫ ∞

−∞
C( f ; t)e j2π f (t−n/W ) d f

= 1

W

∞∑
n=−∞

sl(n/W )c(t − n/W ; t)

(13.5–4)

where c(τ ; t) is the time-variant impulse response. We observe that Equation 13.5–4
has the form of a convolution sum. Hence, it can also be expressed in the alternative
form

rl(t) = 1

W

∞∑
n=−∞

sl(t − n/W )c(n/W ; t) (13.5–5)

It is convenient to define a set of time-variable channel coefficients as

cn(t) = 1

W
c
(

n

W
; t

)
(13.5–6)

Then Equation 13.5–5 expressed in terms of these channel coefficients becomes

rl(t) =
∞∑

n=−∞
cn(t)sl(t − n/W ) (13.5–7)

The form for the received signal in Equation 13.5–7 implies that the time-variant
frequency-selective channel can be modeled or represented as a tapped delay line with
tap spacing 1/W and tap weight coefficients {cn(t)}. In fact, we deduce from Equa-
tion 13.5–7 that the low-pass impulse response for the channel is

c(τ ; t) =
∞∑

n=−∞
cn(t)δ(τ − n/W ) (13.5–8)

and the corresponding time-variant transfer function is

C( f ; t) =
∞∑

n=−∞
cn(t)e− j2π f n/W (13.5–9)

Thus, with an equivalent low-pass-signal having a bandwidth 1
2 W , where W 	 (� f )c,

we achieve a resolution of 1/W in the multipath delay profile. Since the total multipath
spread is Tm , for all practical purposes the tapped delay line model for the channel
can be truncated at L = �Tm W� + 1 taps. Then the noiseless received signal can be
expressed in the form

rl(t) =
L∑

n=1

cn(t)sl

(
t − n

W

)
(13.5–10)
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FIGURE 13.5–1
Trapped delay line model of frequency-selective channel.

The truncated tapped delay line model is shown in Figure 13.5–1. In accordance
with the statistical characterization of the channel presented in Section 13.1, the time-
variant tap weights {cn(t)} are complex-valued stationary random processes. In the spe-
cial case of Rayleigh fading, the magnitudes |cn(t)| ≡ αn(t) are Rayleigh-distributed
and the phases φn(t) are uniformly distributed. Since the {cn(t)} represent the tap
weights corresponding to the L different delays τ = n/W , n = 1, 2, . . . , L , the uncor-
related scattering assumption made in Section 13.1 implies that the {cn(t)} are mutually
uncorrelated. When the {cn(t)} are Gaussian random processes, they are statistically
independent.

13.5–2 The RAKE Demodulator

We now consider the problem of digital signaling over a frequency-selective channel
that is modeled by a tapped delay line with statistically independent time-variant tap
weights {cn(t)}. It is apparent at the outset, however, that the tapped delay line model
with statistically independent tap weights provides us with L replicas of the same
transmitted signal at the receiver. Hence, a receiver that processes the received signal in
an optimum manner will achieve the performance of an equivalent Lth-order diversity
communication system.

Let us consider binary signaling over the channel. We have two equal-energy
signals sl1(t) and sl2(t), which are either antipodal or orthogonal. Their time duration T
is selected to satisfy the condition T 	 Tm . Thus, we may neglect any intersymbol
interference due to multipath. Since the bandwidth of the signal exceeds the coherent
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bandwidth of the channel, the received signal is expressed as

rl(t) =
L∑

k=1

ck(t)sli (t − k/W ) + z(t)

= vi (t) + z(t), 0 ≤ t ≤ T, i = 1, 2

(13.5–11)

where z(t) is a complex-valued zero-mean white Gaussian noise process. Assume for
the moment that the channel tap weights are known. Then the optimum demodulator
consists of two filters matched to v1(t) and v2(t). The demodulator output is sampled at
the symbol rate and the samples are passed to a decision circuit that selects the signal
corresponding to the largest output. An equivalent optimum demodulator employs
cross correlation instead of matched filtering. In either case, the decision variables for
coherent detection of the binary signals can be expressed as

Um = Re
[∫ T

0
rl(t)v

∗
m(t) dt

]

= Re

[
L∑

k=1

∫ T

0
rl(t)c

∗
k (t)s∗

m(t − k/W ) dt

]
, m = 1, 2

(13.5–12)

Figure 13.5–2 illustrates the operations involved in the computation of the decision
variables. In this realization of the optimum receiver, the two reference signals are
delayed and correlated with the received signal rl(t).

An alternative realization of the optimum demodulator employs a single delay line
through which is passed the received signal rl(t). The signal at each tap is correlated
with c∗

k (t)s∗
lm(t), where k = 1, 2, . . . , L and m = 1, 2. This receiver structure is shown

in Figure 13.5–3. In effect, the tapped delay line demodulator attempts to collect the
signal energy from all the received signal paths that fall within the span of the delay
line and carry the same information. Its action is somewhat analogous to an ordinary
garden rake and, consequently, the name “RAKE demodulator” has been coined for this
demodulator structure by Price and Green (1958). The taps on the RAKE demodulator
are often called “RAKE fingers.”

13.5–3 Performance of RAKE Demodulator

We shall now evaluate the performance of the RAKE demodulator under the condition
that the fading is sufficiently slow to allow us to estimate ck(t) perfectly (without noise).
Furthermore, within any one signaling interval, ck(t) is treated as a constant and denoted
as ck . Thus the decision variables in Equation 13.5–12 may be expressed in the form

Um = Re

[
L∑

k=1

c∗
k

∫ T

0
r (t)s∗

lm(t − k/W ) dt

]
, m = 1, 2 (13.5–13)
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FIGURE 13.5–2
Optimum demodulator for wideband binary signals (delayed reference configuration).

Suppose the transmitted signal is sl1(t); then the received signal is

rl(t) =
L∑

n=1

cnsl1(t − n/W ) + z(t), 0 ≤ t ≤ T (13.5–14)

Substitution of Equation 13.5–14 into Equation 13.5–13 yields

Um = Re

[
L∑

k=1

c∗
k

L∑
n=1

cn

∫ T

0
sl1(t − n/W )s∗

lm(t − k/W ) dt

]

+ Re

[
L∑

k=1

c∗
k

∫ T

0
z(t)s∗

lm(t − k/W ) dt

]
, m = 1, 2

(13.5–15)
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FIGURE 13.5–3
Optimum demodulator for wideband binary signals (delayed received signal configuration).

Usually the wideband signals sl1(t) and sl2(t) are generated from pseudorandom
sequences, which result in signals that have the property∫ T

0
sli (t − n/W )s∗

li (t − k/W ) dt ≈ 0, k = n, i = 1, 2 (13.5–16)

If we assume that our binary signals are designed to satisfy this property, then Equa-
tion 13.5–15 simplifies to†

Um = Re

[
L∑

k=1

|ck |2
∫ T

0
sl1(t − k/W )s∗

lm(t − k/W ) dt

]

+ Re

[
L∑

k=1

c∗
k

∫ T

0
z(t)s∗

lm(t − k/W ) dt

]
, m = 1, 2

(13.5–17)

†Although the orthogonality property specified by Equation 13.5–16 can be satisfied by proper selection
of the pseudorandom sequences, the cross correlation of sl1(t − n/W ) with s∗

li (t − k/W ) gives rise to a
signal-dependent self-noise, which ultimately limits the performance. For simplicity, we do not consider
the self-noise term in the following calculations. Consequently, the performance results presented below
should be considered as lower bounds (ideal RAKE). An approximation to the performance of the RAKE
can be obtained by treating the self-noise as an additional Gaussian noise component with noise power
equal to its variance.
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When the binary signals are antipodal, a single decision variable suffices. In this
case, Equation 13.5–17 reduces to

U1 = Re

(
2E

L∑
k=1

α2
k +

L∑
k=1

αk Nk

)
(13.5–18)

where αk = |ck | and

Nk = e− jφk

∫ T

0
z(t)s∗

l (t − k/W ) dt (13.5–19)

But Equation 13.5–18 is identical to the decision variable given in Equation 13.4–4,
which corresponds to the output of a maximal ratio combiner in a system with Lth-order
diversity. Consequently, the RAKE demodulator with perfect (noiseless) estimates of
the channel tap weights is equivalent to a maximal ratio combiner in a system with
Lth-order diversity. Thus, when all the tap weights have the same mean-square value,
i.e., E(α2

k ) is the same for all k, the error rate performance of the RAKE demodulator
is given by Equations 13.4–15 and 13.4–16. On the other hand, when the mean-square
values E(α2

k ) are not identical for all k, the derivation of the error rate performance
must be repeated since Equation 13.4–15 no longer applies.

We shall derive the probability of error for binary antipodal and orthogonal signals
under the condition that the mean-square values of {αk} are distinct. We begin with the
conditional error probability

Pb(γb) = Q
(√

γb(1 − ρr )
)

(13.5–20)

where ρr = −1 for antipodal signals, ρr = 0 for orthogonal signals, and

γb = E
N0

L∑
k=1

α2
k =

L∑
k=1

γk (13.5–21)

Each of the {γk} is distributed according to a chi-squared distribution with two
degrees of freedom. That is,

p(γk) = 1

γ k
e−γk/ γ k (13.5–22)

where γ k is the average SNR for the kth path, defined as

γ k = E
N0

E
(
α2

k

)
(13.5–23)

Furthermore, from Equation 13.4–10 we know that the characteristic function of γk is

�γk (v) = 1

1 − jvγ k
(13.5–24)
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Since γb is the sum of L statistically independent components {γk}, the character-
istic function of γb is

�γb (v) =
L∏

k=1

1

1 − jvγ k
(13.5–25)

The inverse Fourier transform of the characteristic function in Equation 13.5–25 yields
the probability density function of γb in the form

p(γb) =
L∑

k=1

πk

γ k
e−γb/ γ k , γb ≥ 0 (13.5–26)

where πk is defined as

πk =
L∏

i=1
i =k

γ k

γ k − γ i
(13.5–27)

When the conditional error probability in Equation 13.5–20 is averaged over the
probability density function given in Equation 13.5–26, the result is

Pb = 1
2

L∑
k=1

πk

[
1 −

√
γ k(1 − ρr )

2 + γ k(1 − ρr )

]
(13.5–28)

This error probability can be approximated as (γ k 	 1)

Pb ≈
(

2L − 1

L

) L∏
k=1

1

2γ k(1 − ρr )
(13.5–29)

By comparing Equation 13.5–29 for ρr = −1 with Equation 13.4–18, we observe that
the same type of asymptotic behavior is obtained for the case of unequal SNR per path
and the case of equal SNR per path.

In the derivation of the error rate performance of the RAKE demodulator, we
assumed that the estimates of the channel tap weights are perfect. In practice, relatively
good estimates can be obtained if the channel fading is sufficiently slow, e.g., (�t)c/T ≥
100, where T is the signaling interval. Figure 13.5–4 illustrates a method for estimating
the tap weights when the binary signaling waveforms are orthogonal. The estimate is
the output of the low-pass filter at each tap. At any one instant in time, the incoming
signal is either sl1(t) or sl2(t). Hence, the input to the low-pass filter used to estimate
ck(t) contains signal plus noise from one of the correlators and noise only from the
other correlator. This method for channel estimation is not appropriate for antipodal
signals, because the addition of the two correlator outputs results in signal cancellation.
Instead, a single correlator can be employed for antipodal signals. Its output is fed
to the input of the low-pass filter after the information-bearing signal is removed. To
accomplish this, we must introduce a delay of one signaling interval into the channel
estimation procedure, as illustrated in Figure 13.5–5. That is, first the receiver must
decide whether the information in the received signal is +1 or −1 and, then, it uses the
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FIGURE 13.5–4
Channel tap weight estimation with binary orthogonal signals.

decision to remove the information from the correlator ouput prior to feeding it to the
low-pass filter.

If we choose not to estimate the tap weights of the frequency-selective channel, we
may use either DPSK signaling or noncoherently detected orthogonal signaling. The
RAKE demodulator structure for DPSK is illustrated in Figure 13.5–6. It is apparent that
when the transmitted signal waveform sl(t) satisfies the orthogonality property given in
Equation 13.5–16, the decision variable is identical to that given in Equation 13.4–23 for
an Lth-order diversity system. Consequently, the error rate performance of the RAKE
demodulator for a binary DPSK is identical to that given in Equation 13.4–15 with
μ = γ c/(1 + γ c), when all the signal paths have the same SNR γ c. On the other hand,
when the SNRs {γ k} are distinct, the error probability can be obtained by averaging
Equation 13.4–24, which is the probability of error conditioned on a time-invariant
channel, over the probability density function of γb given by Equation 13.5–26. The
result of this integration is

Pb = ( 1
2

)2L−1
L−1∑
m=0

m!bm

L∑
k=1

πk

γ k

(
γ k

1 + γ k

)m+1

(13.5–30)

where πk is defined in Equation 13.5–27 and bm in Equation 13.4–25.
Finally, we consider binary orthognal signaling over the frequency-selective chan-

nel with square-law detection at the receiver. This type of signal is appropriate when
the fading is rapid enough to preclude a good estimate of the channel tap weights.
The RAKE demodulator with square-law combining of the signal from each tap is
illustrated in Figure 13.5–7. In computing its performance, we again assume that the
orthogonality property given in Equation 13.5–16 holds. Then the decision variables at
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FIGURE 13.5–5
Channel tap weight estimation with binary antipodal signals.

FIGURE 13.5–6
RAKE demodulator for DPSK signals.
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FIGURE 13.5–7
RAKE demodulator for square-law combination of orthogonal signals.

the output of the RAKE are

U1 =
L∑

k=1

|2Eck + Nk1|2

U2 =
L∑

k=1

|Nk2|2
(13.5–31)

where we have assumed that sl1(t) was the transmitted signal. Again we observe that the
decision variables are identical to the ones given in Equation 13.4–29, which apply to
orthogonal signals with Lth-order diversity. Therefore, the performance of the RAKE
demodulator for square-law-detected orthogonal signals is given by Equation 13.4–15
with μ = γ̄c/(2 + γ −

c ) when all the signal paths have the same SNR. If the SNRs are
distinct, we can average the conditional error probability given by Equation 13.4–24,
with γb replaced by 1

2γb, over the probability density function p(γb) given in Equa-
tion 13.5–26. The result of this averaging is given by Equation 13.5–30, with γ k replaced
by 1

2γ k .
In the above analysis, the RAKE demodulator shown in Figure 13.5–7 for square-

law combining of orthogonal signals is assumed to contain a signal component at each
delay. If that is not the case, its performance will be degraded, since some of the tap
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correlators will contribute only noise. Under such conditions, the low-level, noise-only
contributions from the tap correlators should be excluded from the combiner, as shown
by Chyi et al. (1988).

The configurations of the RAKE demodulator presented in this section can be
easily generalized to multilevel signaling. In fact, if M-ary PSK or DPSK is chosen,
the RAKE structures presented in this section remain unchanged. Only the PSK and
DPSK detectors that follow the RAKE correlator are different.

Generalized RAKE Demodulator
The RAKE demodulator described above is the optimum demodulator when the ad-
ditive noise is white and Gaussian. However, there are communication scenarios in
which additive interference from other users of the channel results in colored additive
noise. This is the case, for example, in the downlink of a cellular communication sys-
tem employing CDMA as a multiple access method. In this case, the spread spectrum
signals transmitted from a base station to the mobile receivers carry information on
synchronously transmitted orthogonal spreading codes. However, in transmission over
a frequency-selective channel, the orthogonality of the code sequences is destroyed by
the channel time dispersion due to multipath. As a consequence, the RAKE demodu-
lator for any given mobile receiver must demodulate its desired signal in the presence
of additional additive interference resulting from the cross-correlations of its desired
spreading code sequence with the multipath corrupted code sequences that are assigned
to the other mobile users. This additional interference is generally characterized as col-
ored Gaussian noise, as shown by Bottomley (1993) and Klein (1997).

A model for the downlink transmission in a CDMA cellular communication system
is illustrated in Figure 13.5–8. The base station transmits the combined signal.

s(t) =
K∑

k=1

sk(t) (13.5–32)

to the K mobile terminals, where each sk(t) is a spread spectrum signal intended for the
kth user and the corresponding spreading code for the kth user is orthogonal with each
of the spreading codes of the other K − 1 users. We assume that the signals propagate
through a channel characterized by the baseband equivalent lowpass, time-invariant

Channel
ck(z)

s1(t)

s2(t)

sk(t)

Base station

�

AWGN

� rR(t),  k � 1, 2, ..., K . . . 

FIGURE 13.5–8
Model for the downlink transmission of a CDMA cellular communication system.
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FIGURE 13.5–9
Structure of generalized RAKE demodulator.

impulse response

ck(τ ) =
Lk∑

i=1

cki δ(τ − τki ), k = 1, 2, . . . , K (13.5–33)

where Lk is the number of resolvable multipath components, {cki } are the complex-
valued coefficients, and {τki } are the corresponding time delays. To simplify this pre-
sentation, we focus on the processing at the receiver of the first user (k = 1) and drop
the index k. In a CDMA cellular system, an unmodulated spread spectrum signal, say
s0(t), is transmitted along with the information-bearing signals and serves as a pilot
signal that is used by each mobile receiver to estimate the channel coefficients {ci } and
the time delays {τi }.

A conventional RAKE demodulator would consist of L “fingers” with each finger
corresponding to one of the L channel delays, and the weights at the L fingers would be
{c∗

i }, the complex conjugates of the corresponding channel coefficients. In contrast, a
generalized RAKE demodulator consists of Lg > L RAKE fingers, and the weights at
the Lg fingers, denoted as {wi }, are different from {c∗

i }. The structure of the generalized
RAKE demodulator is illustrated in Figure 13.5–9 for phase coherent modulation such
as PSK or QAM. The decision variable U at the detector may be expressed as

U = wH y (13.5–34)

It is convenient to express the received vector y at the output of the cross-
correlators as

y = gb + z (13.5–35)

where g is a vector of complex-valued elements which result from the cross-correlations
of the desired received signal, say s1(t) ∗ c1(t), with the corresponding spreading se-
quence at the Lg delays, b is the desired symbol to be detected, and z represents the
vector of additive Gaussian noise plus interference resulting from the cross-correlations
of the spreading sequence with the received signals of the other users and intersymbol
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interference due to channel multipath. For a sufficiently large number of users and
channel multipath components, the vector z may be characterized as complex-valued
Gaussian with zero mean and covariance matrix Rz = E[zzH ]. Based on this statis-
tical characterization of z, the RAKE finger weight vector for maximum-likelihood
detection is given as

w = R−1
z g (13.5–36)

Giventhechannel impulseresponse, the implementationof themaximum-likelihood
detector requires the evaluation of the covariance matrix Rz and the desired signal vec-
tor g. The procedure for evaluation of these parameters has been described in a paper
by Bottomley et al. (2000). Also investigated in this paper is the selection of the number
of RAKE fingers and the selection of the corresponding delays for different channel
characteristics.

In the description of the generalized RAKE demodulator given above, we assumed
that the channel is time-invariant. In a randomly time-variant channel, the position of
the RAKE fingers and the weights {wi } must be varied according to the characteristics
of the channel impulse response. The pilot signal transmitted by the base station to
the mobile receivers is used to estimate the channel impulse response, from which the
finger placement and weights {wi } can be determined adaptively. The interested reader
is referred to the paper by Bottomley et al. (2000) for a detailed description of the
performance of the generalized RAKE demodulator for some channel models.

13.5–4 Receiver Structures for Channels with Intersymbol Interference

As described above, the wideband signal waveforms that are transmitted through the
multipath channels resolve the multipath components with a time resolution of 1/W ,
where W is the signal bandwidth. Usually, such wideband signals are generated as
direct sequence spread spectrum signals, in which the P N spreading sequences are
the outputs of linear feedback shift registers, e.g., maximum-length linear feedback
shift registers. The modulation impressed on the sequences may be binary PSK, QPSK,
DPSK, or binary orthogonal. The desired bit rate determines the bit interval or symbol
interval.

The RAKE demodulator that we described above is the optimum demodulator
based on the condition that the bit interval Tb 	 Tm , i.e., there is negligible ISI. When
this condition is not satisfied, the RAKE demodulator output is corrupted by ISI. In
such a case, an equalizer is required to suppress the ISI.

To be specific, we assume that binary PSK modulation is used and spread by a
PN sequence. The bandwidth of the transmitted signal is sufficiently broad to resolve
two or more multipath components. At the receiver, after the signal is demodulated to
baseband, it may be processed by the RAKE, which is the matched filter to the channel
response, followed by an equalizer to suppress the ISI. The RAKE output is sampled
at the bit rate, and these samples are passed to the equalizer. An appropriate equalizer,
in this case, would be a maximum-likelihood sequence estimator implemented by use
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FIGURE 13.5–10
Receiver structure for processing wideband signal corrupted by ISI.

of the Viterbi algorithm or a decision feedback equalizer (DFE). This demodulator
structure is shown in Figure 13.5–10.

Other receiver structures are also possible. If the period of the PN sequence is equal
to the bit interval, i.e., LTc = Tb, where Tc is the chip interval and L is the number of
chips per bit, a fixed filter matched to the spreading sequence may be used to process
the received signal and followed by an adaptive equalizer, such as a fractionally spaced
DFE, as shown in Figure 13.5–11. In this case, the matched filter output is sampled
at some multiple of the chip rate, e.g., twice the chip rate, and fed to the fractionally
spaced DFE. The feedback filter in the DFE would have taps spaced at the bit interval.
The adaptive DFE would require a training sequence for adjustment of its coefficients
to the channel multipath structure.

An even simpler receiver structure is one in which the spread spectrum matched
filter is replaced by a low-pass filter whose bandwidth is matched to the transmitted
signal bandwidth. The output of such a filter may be sampled at an integer multiple
of the chip rate and the samples are passed to an adaptive fractionally spaced DFE. In
this case, the coefficients of the feedback filter in the DFE, with the aid of a training
sequence, will adapt to the combination of the spreading sequence and the channel
multipath. Abdulrahman et al. (1994) consider the use of a DFE to suppress ISI in a
CDMA system in which each user employs a wideband direct sequence spread spectrum
signal.

The paper by Taylor et al. (1998) provides a broad survey of equalization techniques
and their performance for wireless channels.

FIGURE 13.5–11
Alternative receiver structure for processing wideband signal corrupted by ISI.
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13.6
MULTICARRIER MODULATION (OFDM)

Multicarrier modulation was introduced in Chapter 11 (Section 11.2), and a special
form of multicarrier transmission, called orthogonal frequency-division multiplexing
(OFDM), was treated in detail. In this section, we consider the use of OFDM for digital
transmission on fading multipath channels.

From our previous discussion, we have observed that OFDM is an attractive al-
ternative to single-carrier modulation for use in time-dispersive channels. By selecting
the symbol duration in an OFDM system to be significantly larger than the channel
dispersion, intersymbol interference (ISI) can be rendered negligible and completely
eliminated by use of a time guard band or, equivalently, by the use of a cyclic pre-
fix embedded in the OFDM signal. The elimination of ISI due to multipath dispersion,
without the use of complex equalizers, is a basic motivation for use of OFDM for digital
communication in fading multipath channels. However, OFDM is especially vulnera-
ble to Doppler spread resulting from time variations in the channel impulse response,
as is the case in mobile communication systems. The Doppler spreading destroys the
orthogonality of the OFDM subcarriers and results in intercarrier interference (ICI)
which can severely degrade the performance of the OFDM system. In the following
section we evaluate the effect of a Doppler spread on the performance of OFDM.

13.6–1 Performance Degradation of an OFDM System due
to Doppler Spreading

Let us consider an OFDM system with N subcarriers {e j2π fk t}, where each subcarrier
employs either M-ary QAM or PSK modulation. The subcarriers are orthogonal over
the symbol duration T , i.e., fk = k/T, k = 1, 2, . . . , N , so that

1

T

∫ T

0
e j2π fi t e− j2π fk t dt =

{
1 k = i
0 k = i (13.6–1)

The channel is modeled as a frequency-selective randomly varying channel with
impulse response c(τ ; t). Within the frequency band of each subcarrier, the channel is
modeled as a frequency-nonselective Rayleigh fading channel with impulse response.

ck(τ ; t) = αk(t)δ(t), k = 0, 1, . . . , N − 1 (13.6–2)

It is assumed that the processes {αk(t), k = 0, 1, . . . , N − 1} are complex-valued,
jointly stationary, and jointly Gaussian with zero means and cross-covariance function

Rαkαi (τ ) = E[αk(t + τ )α∗
t (t)], k, i = 0, 1, . . . , N − 1 (13.6–3)

For each fixed k, the real and imaginary parts of the process αk(t) are assumed
independent with identical covariance function. It is further assumed that the covariance
function Rαkαi (τ ) has the following factorable form

Rαkαi (τ ) = R1(τ )R2(k − i) (13.6–4)
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which is sufficient to represent the frequency selectivity and the time-varying effects
of the channel. R1(τ ) represents the temporal correlation of the process αk(t), which is
identical for all k = 0, 1, . . . , N − 1, and R2(k) represents the correlation in frequency
across subcarriers.

To obtain numerical results, we assume that the power spectral density correspond-
ing to R1(τ ) is modeled as in Jakes (1974) and given by (see Figure 13.1–8)

S( f ) =

⎧⎪⎪⎨
⎪⎪⎩

1

π fm

√
1 − ( f/ fm)2

| f | ≤ fm

0 otherwise

(13.6–5)

where Fd is the maximum Doppler frequency. We note that

R1(τ ) = J0(2π fmτ ) (13.6–6)

where J0(τ ) is the zero-order Bessel function of the first kind. To specify the correlation
in frequency across the subcarriers, we model the multipath power intensity profile as
an exponential of the form

Rc(τ ) = βe−βτ , τ > 0, β > 0 (13.6–7)

where β is a parameter that controls the coherence bandwidth of the channel. The
Fourier transform of Rc(τ ) yields

RC ( f ) = β

β + j2π f
(13.6–8)

which provides a measure of the correlation of the fading across the subcarriers, as
shown in Figure 13.6–1. Hence, R2(k) = RC (k/T ) is the frequency separation between
two adjacent subcarriers. The 3-dB bandwidth of RC ( f ) may be defined as the coherence
bandwidth of the channel and is easily shown to be

√
3β/2π .

The channel model described above is suitable for modeling OFDM signal trans-
mission in mobile radio systems, such as cellular systems and radio broadcasting sys-
tems. Since the symbol duration T is usually selected to be much larger than the channel
multipath spread, it is reasonable to model the signal fading as flat over each subcar-
rier. However, compared with the entire OFDM system bandwidth W , the coherence
bandwidth of the channel is usually smaller. Hence, the channel is frequency-selective
over the entire OFDM signal bandwidth.

Let us now model the time variations of the channel within an OFDM symbol
interval T . For mobile radio channels of practical interest, the channel coherence time
is significantly larger than T . For such slow fading channels, we may use the two-term
Taylor series expansion, first introduced by Bello (1963), to represent the time-varying
channel variations αk(t) as

αk(t) = αk(t0) + α′
k(t0)(t − t0), t0 = T

2
, 0 ≤ t ≤ T (13.6–9)
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FIGURE 13.6–1
Multipath delay profile and frequency correlation function.

Therefore, the impulse response of the kth subchannel within a symbol interval is
given as

ck(τ ; t) = αk(t0)δ(τ ) + (t − t0)α′
k(t0)δ(τ ) (13.6–10)

Since R1(τ ) given by Equation 13.6–6 is infinitely differentiable, all mean-square
derivatives exist and hence the differentiation of αk(t) is justified.

Based on the channel model described above, we determine the ICI term at the
detector and evaluate its power. The baseband signal transmitted over the channel is
expressed as

s(t) = 1√
T

N−1∑
k=0

sk e j2π fk t , 0 ≤ t ≤ T (13.6–11)

where fk = k/T and sk, k = 0, 1, . . . , N − 1, represents the complex-valued signal
constellation points. We assume that

E
[|sk |2

] = 2Eavg (13.6–12)

where 2Eavg denotes the average symbol energy of each sk .
The received baseband signal may be expressed as

r (t) = 1√
T

N−1∑
k=0

αk(t)sk e j2π fk t + n(t) (13.6–13)

where n(t) is the additive noise, which is modeled as a complex-valued, zero-mean
Gaussian process that is spectrally flat within the signal bandwidth with spectral den-
sity 2N0 W/Hz. By using the two-term Taylor series expansion for ak(t), r (t) may be
expressed as

r (t) = 1√
T

N−1∑
k=0

αk (t0)ske j2π fk t + 1√
T

N−1∑
k=0

(t − t0)α′
k(t0)sk e j2π fk t + n(t) (13.6–14)
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The received signal in a symbol interval is passed through a parallel bank of N
correlators, where each correlator is tuned to one of the N subcarrier frequencies. The
output of the i th correlator at the sampling instant is

ŝi = 1√
T

T∫
0

r (t) e− j2π fi t dt

= αi (t0)si + T

2π j

N−1∑
k=0
k =i

α′
k(t0)sk

k − i
+ ni

(13.6–15)

The first term in Equation 13.6–15 represents the desired signal, the second term rep-
resents the ICI, and the third term is the additive noise component.

The mean-square value of the desired signal component is

S = E
[|αi (t0)si |2

]
= E

[|αi (t0)|2] E
[|si |2

] = 2Eavg

(13.6–16)

where the average channel gain is normalized to unity. The mean-square value of the
ICI term is evaluated as follows. Since Rαs ak (τ ) = R1(τ ) is infinitely differentiable, all
(mean-square) derivatives of the process αk(t), −∞ < t < ∞, exist. In particular, the
first derivative α′

k(t) is a zero-mean, complex-valued Gaussian process with correlation
function

E
[
α′

k(t + τ )(α′
k(t)∗)

] = −R′′
1 (τ ) (13.6–17)

with corresponding spectral density (2π f )2S( f ). Hence,

E
[|α′

k(t)|2] =
∫ fm

− fm

(2π f )2S( f ) d f = 2π2 f 2
m (13.6–18)

The power in the ICI term is

I = E

⎡
⎢⎢⎣

∣∣∣∣∣∣∣∣
T

2π j

N−1∑
k=0
k =i

a′
k(t0)sk

k − i

∣∣∣∣∣∣∣∣

2⎤
⎥⎥⎦

=
(

T

2π

)2 N−1∑
k=0
k =i

N−1∑
l=0
l =i

1

(k − i)(l − i)
E

[
α′

k(t0)sk (α′
l(t0)sl)∗

]

+
(

T

2π

)2 N−1∑
k=0
k =i

1

(k − i)2
E

[|α′
k(t0)sk |2

]

(13.6–19)

We note that the pair (α′
k(t0), α′

l(t0)) is statistically independent of (sk, sl). Further-
more, the {sk} are iid with zero means. Hence, the first term of the right-hand side of
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FIGURE 13.6–2
Signal-to-ICI power ratio versus normalized Doppler spread.

Equation 13.6–19 is zero. Therefore, by using the result from Equation 13.6–18 in
Equation 13.6–19, the power of the ICI component is

I =
(
T f m

)
2

2 N−1∑
k=0
k =i

2Es

(k − i)2
(13.6–20)

Consequently, the signal-to-interference ratio S/I is given by

S

I
= 1

(T fm)2

2

N−1∑
k=0
k =1

1

(k − i)2

(13.6–21)

Graphs of S/I versus T f m are shown in Figure 13.6–2 for N = 256 subcarriers and
i = N/2, the interference on the middle subcarrier.

The evaluation of the effect of the ICI on the error rate performance of an OFDM
system requires knowledge of the PDF of the ICI which, in general, is a mixture of
Gaussian PDFs. However, when the number of subcarriers is large, the distribution of
the ICI can be approximated by a Gaussian distribution, and thus the evaluation of the
error rate performance is straightforward.

Figure 13.6–3 illustrates the symbol error probability for an OFDM system having
N = 256 subcarriers and 16-QAM, where the error probability is evaluated analytically
based on the Gaussian model for the ICI and by Monte Carlo simulation. We observe that
the ICI severely degrades the performance of the OFDM system. In the following section
we describe a method for suppressing the ICI and, thus, improving the performance of
the OFDM system.
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FIGURE 13.6–3
Symbol error probability for 16-QAM OFDM system with N = 256 subcarriers.

13.6–2 Suppression of ICI in OFDM Systems

The distortion caused by ICI in an OFDM system is akin to the distortion caused by
ISI in a single-carrier system. Recall that a linear time-domain equalizer based on the
minimum mean-square-error (MMSE) criterion is an effective method for suppressing
ISI. In a similar manner, we may apply the MMSE criterion to suppress the ICI in the
frequency domain. Thus, we begin with the N frequency samples at the output of the
discrete Fourier transform (DFT) processor, which we denote by the vector R(m) for
the mth frame. Then we form the estimate of the symbol sk(m) as

ŝk(m) = bH
k (m)R(m), k = 0, 1, . . . , N − 1 (13.6–22)

where bk(m) is the coefficient vector of size N × 1. This vector is selected to minimize
the MSE

E
[|sk(m) − ŝk(m)|2] = E

[|sk(m) − bH
k (m)R(m)|2] (13.6–23)

where the expectation is taken with respect to the signal and noise statistics. By applying
the orthogonality principle, the optimum coefficient vector is obtained as

bk(m) = [
G(m)GH (m) + σ 2 I N

]−1
gk(m), k = 0, 1, . . . , N − 1 (13.6–24)
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where

E
[
R(m)RH (m)

] = G(m)GH (m) + σ 2 I N

E
[
R(m)s H

k (m)
] = gk(m)

(13.6–25)

and G(m) is related to the channel impulse response matrix H(m) through the DFT
relation (see Problem 13.16)

G(m) = W H H(m)W (13.6–26)

where W is the orthonormal (IDFT) transformation matrix. The vector gk(m) is the kth
column of the matrix G(m), and σ 2 is the variance of the additive noise component.
It is easily shown that the minimum MSE for the signal on the kth subcarrier may be
expressed as

E
[|sk(m) − ŝk(m)|2] = 1 − gH

k (m)(G(m)GH (m) + σ 2 I N )−1 gk(m) (13.6–27)

We observe that the optimum weight vectors {bk(m)} require knowledge of the
channel impulse response. In practice, the channel response may be estimated by pe-
riodically transmitting pilot signals on each of the subcarriers and by employing a
decision-directed method when data are transmitted on the N subcarriers. In a slowly
fading channel, the coefficient vectors {bk(m)} may also be adjusted recursively by
employing either an LMS- or an RLS-type algorithm, as previously described in the
context of equalization for suppression of ISI.

13.7
BIBLIOGRAPHICAL NOTES AND REFERENCES

In this chapter, we have considered a number of topics concerned with digital commu-
nications over a fading multipath channel. We began with a statistical characterization
of the channel and then described the ramifications of the channel characteristics on
the design of digital signals and on their performance. We observed that the reliability
of the communication system is enhanced by the use of diversity transmission and
reception. We also considered the transmission of digital information through time-
dispersive channels and described the RAKE demodulator, which is the matched filter
for the channel. Finally, we considered the use of OFDM for mobile communications
and on the performance of an OFDM system, described the effect of ICI caused by
Doppler frequency spreading.

The pionerring work on the characterization of fading multipath channels and
on signal and receiver design for reliable digital communciations over such channels
was done by Price (1954, 1956). This work was followed by additional significant
contributions from Price and Green (1958, 1960), Kailath (1960, 1961), and Green
(1962). Diversity transmission and diversity combining techniques under a variety of
channel conditions have been considered in the papers by Pierce (1958), Brennan
(1959), Turin (1961, 1962), Pierce and Stein (1960), Barrow (1963), Bello and Nelin
(1962a, b, 1963), Price (1962a, b), and Lindsey (1964).
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Our treatment of digital communications over fading channels focused primarily
on the Rayleigh fading channel model. For the most part, this is due to the wide ac-
ceptance of this model for describing the fading effects on many radio channels and to
its mathematical tractability. Although other statistical models, such as the Ricean fad-
ing model or the Nakagami fading model may be more appropriate for characterizing
fading on some real channels, the general approach in the design of reliable commu-
nications presented in this chapter carries over. Alouini and Goldsmith (1998), Simon
and Alouini (1988, 2000), and Annamalai et al. (1998, 1999) have presented a unified
approach to evaluating the error rate performance of digital communication systems
for various fading channel models. The effect of ICI in OFDM for mobile commu-
nications has been extensively treated in the literature, e.g., the papers by Robertson
and Kaiser (1999), Li and Kavehrad (1999), Ciavaccini and Vitetta (2000), Li and
Cimini (2001), Stamoulis et al. (2002), and Wang et al. (2006). A general treatment
of wireless communications is given in the books by Rappaport (1996) and Stuber
(2000).

PROBLEMS

13.1 The scattering function S(τ ; λ) for a fading multipath channel is nonzero for the range
of values 0 ≤ τ ≤ 1 ms and −0.1 Hz ≤ λ ≤ 0.1 Hz. Assume that the scattering function
is approximately uniform in the two variables.
a. Give numerical values for the following parameters:

(i) The multipath spread of the channel.
(ii) The Doppler spread of the channel.

(iii) The coherence time of the channel.
(iv) The coherence bandwidth of the channel.
(v) The spread factor of the channel.

b. Explain the meaning of the following, taking into consideration the answers given
in (a):

(i) The channel is frequency-nonselective.
(ii) The channel is slowly fading.

(iii) The channel is frequency-selective.
c. Suppose that we have a frequency allocation (bandwidth) of 10 kHz and we wish to

transmit at a rate of 100 bits over this channel. Design a binary communication system
with frequency diversity. In particular, specify

(i) The type of modulation.
(ii) The number of subchannels.

(iii) The frequency separation between adjacent carriers.
(iv) The signaling interval used in your design.
Justify your choice of parameters.

13.2 Consider a binary communication system for transmitting a binary sequence over a fading
channel. The modulation is orthogonal FSK with third-order frequency diversity (L = 3).
The demodulator consists of matched filters followed by square-law detectors. Assume
that the FSK carriers fade independently and identically according to a Rayleigh envelope
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distribution. The additive noises on the diversity signals are zero-mean Gaussian with
autocorrelation functions E[z∗

k (t)zk(t +τ )] = 2N0δ(τ ). The noise processes are mutually
statistically independent.
a. The transmitted signal may be viewed as binary FSK with square-law detection,

generated by a repetition code of the form

1 → c1 = [1 1 1], 0 → c0 = [0 0 0]

Determine the error rate performance Pbh for a hard-decision decoder following the
square-law-detected signals.

b. Evaluate Pbh for γ c = 100 and 1000.
c. Evaluate the error rate Pbs for γ c = 100 and 1000 if the decoder employs soft-decision

decoding.
d. Consider the generalization of the result in (a). If a repetition code of block length

L (L odd) is used, determine the error probability Pbh of the hard-decision decoder
and compare that with Pbs , the error rate of the soft-decision decoder. Assume γ 	 1.

13.3 Suppose that the binary signal ±sl (t) is transmitted over a fading channel and the received
signal is

rl (t) = ±asl (t) + z(t), 0 ≤ t ≤ T

where z(t) is zero-mean white Gaussian noise with autocorrelation function

Rzz(τ ) = 2N0δ(τ )

The energy in the transmitted signal isE = 1
2

∫ T
0 |sl (t)|2 dt . The channel gain a is specified

by the probability density function

p(a) = 0.1δ(a) + 0.9δ(a − 2)

a. Determine the average probability of error Pb for the demodulator that employs a filter
matched to sl (t).

b. What value does Pb approach as E/N0 approaches infinity?
c. Suppose that the same signal is transmitted on two statistically independently fading

channels with gains a1 and a2, where

p(ak) = 0.1δ(ak) + 0.9δ(ak − 2), k = 1, 2

The noises on the two channels are statistically independent and identically distributed.
The demodulator employs a matched filter for each channel and simply adds the two
filter outputs to form the decision variable. Determine the average Pb.

d. For the case in (c) what value does Pb approach as E/N0 approaches infinity?

13.4 A multipath fading channel has a multipath spread of Tm = 1 s and a Doppler spread
Bd = 0.01 Hz. The total channel bandwidth at bandpass available for signal transmission
is W = 5 Hz. To reduce the effects of intersymbol interference, the signal designer selects
a pulse duration T = 10 s.
a. Determine the coherence bandwidth and the coherence time.
b. Is the channel frequency selective? Explain.
c. Is the channel fading slowly or rapidly? Explain.
d. Suppose that the channel is used to transmit binary data via (antipodal) coherently

detected PSK in a frequency diversity mode. Explain how you would use the available
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channel bandwidth to obtain frequency diversity and determine how much diversity
is available.

e. For the case in (d), what is the approximate SNR required per diversity to achieve an
error probability of 10−6?

f. Suppose that a wideband signal is used for transmission and a RAKE-type receiver is
used for demodulation. How many taps would you use in the RAKE receiver?

g. Explain whether or not the RAKE receiver can be implemented as a coherent receiver
with maximal ratio combining.

h. If binary orthogonal signals are used for the wideband signal with square-law post-
detection combining in the RAKE receiver, what is the approximate SNR required to
achieve an error probability of 10−6? (Assume that all taps have the same SNR.)

13.5 In the binary communication system shown in Figure P13.5, z1(t) and z2(t) are statistically
independent white Gaussian noise processes with zero-mean and identical autocorrelation
functions Rzz(τ ) = 2N0δ(τ ). The sampled values U1 and U2 represent the real parts of
the matched filter outputs. For example, if sl (t) is transmitted, then we have

U1 = 2E + N1

U2 = N1 + N2

where E is the transmitted signal energy and

Nk = Re

[∫ T

0
s∗

l (t)zk(t) dt

]
, k = 1, 2

It is apparent that U1 and U2 are correlated Gaussian variables while N1 and N2 are
independent Gaussian variables. Thus,

p(n1) = 1√
2πσ

exp

(
− n2

1

2σ 2

)

p(n2) = 1√
2πσ

exp

(
− n2

2

2σ 2

)

where the variance of Nk is σ 2 = 2EN0.
a. Show that the joint probability density function for U1 and U2 is

p(u1, u2) = 1

2πσ 2
exp

{
− 1

σ 2

[
(u2 − 2E)2 − u2(u1 − 2E) + 1

2 u2
2

]}

FIGURE P13.5
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if s(t) is transmitted and

p(u1, u2) = 1

2πσ 2
exp

{
− 1

σ 2

[
(u1 + 2E)2 − u2(u1 + 2E) + 1

2 u2
2

]}

if −s(t) is transmitted.
b. Based on the likelihood ratio, show that the optimum combination of U1 and U2 results

in the decision variable

U = U1 + βU2

where β is a constant. What is the optimum value of β?
c. Suppose that s(t) is transmitted. What is the probability density function of U?
d. What is the probability of error assuming that s(t) was transmitted? Express your

answer as a function for the SNR E/N0.
e. What is the loss in performance if only U = U1 is the decision variable?

13.6 Consider the model for a binary communication system with diversity as shown in Fig-
ure P13.6. The channels have fixed attenuations and phase shifts. The {zk(t)} are complex-
valued white Gaussian noise processes with zero-mean and autocorrelation functions

Rzz(t) = E
[
z∗

k (t)zk(t + τ )
] = 2N0kδ(τ )

(Note that the spectral densities {N0k} are all different.) Also, the noise processes {zk(t)}
are mutually statistically independent. The {βk} are complex-valued weighting factors to
be determined. The decision variable from the combiner is

U = Re

(
L∑

k=1

βkUk

)
1
≷
−1

0

a. Determine the PDF p(u) when +1 is transmitted.
b. Determine the probability of error Pb as a function of the weights {βk}.
c. Determine the values of {βk} that minimize Pb.

FIGURE P13.6

13.7 Determine the probability of error for binary orthogonal signaling with Lth-order diversity
over a Rayleigh fading channel. The PDFs of the two decision variables are given by
Equations 13.4–31 and 13.4–32.
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13.8 A binary sequence is transmitted via binary antipodal signaling over a Rayleigh fading
channel with Lth-order diversity. When sl (t) is transmitted, the received equivalent low-
pass signals are

rk(t) = αke jφk sl (t) + zk(t), k = 1, 2, . . . , L

The fading among the L subchannels is statistically independent. The additive noise
terms {zk(t)} are zero-mean, statistically independent, and identically distributed white
Gaussian noise processes with autocorrelation function Rzz(τ ) = 2N0δ(τ ). Each of the
L signals is passed through a filter matched to sl (t) and the output is phase-corrected to
yield

Uk = Re

[
e− jφk

∫ T

0
rk(t)s∗

l (t) dt

]
, k = 1, 2, . . . , L

The {Uk} are combined by a linear combiner to form the decision variable

U =
L∑

k=1

Uk

a. Determine the PDF of U conditional on fixed values for the {ak}.
b. Determine the expression for the probability of error when the {ak} are statistically

independent and identically distributed Rayleigh random variables.

13.9 The Chernov bound for the probability of error for binary FSK with diversity L in Rayleigh
fading was shown to be

P2(L) < [4p(1 − p)]L =
[

4
1 + γ c

(2 + γ c)2

]L

< 2−γ b g(γ c)

where

g(γ c) = 1

γ c
log2

[
(2 + γ c)2

4(1 + γ c)

]

a. Plot g(γ c) and determine its approximate maximum value and the value of γ c where
the maximum occurs.

b. For a given γ b, determine the optimal order of diversity.
c. Compare P2(L), under the condition that g(γ c) is maximized (optimal diversity), with

the error probability for binary FSK and AWGN with no fading, which is

P2 = 1
2 e−γb/2

and determine the penalty in SNR due to fading and noncoherent (square-law) com-
bining.

13.10 A DS spread spectrum system is used to resolve the multipath signal components in a
two-path radio signal propagation scenario. If the path length of the secondary path is
300 m longer than that of the direct path, determine the minimum chip rate necessary to
resolve the multipath components.
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13.11 A baseband digital communication system employs the signals shown in Figure P13.11(a)
for the transmission of two equiprobable messages. It is assumed that the communication
problem studied here is a “one-shot” communication problem; that is, the above messages
are transmitted just once and no transmission takes place afterward. The channel has no
attenuation (α = 1), and the noise is AWGN with power spectral density 1

2 N0.
a. Find an appropriate orthonormal basis for the representation of the signals.
b. In a block diagram, give the precise specifications of the optimum receiver using

matched filters. Label the diagram carefully.
c. Find the error probability of the optimum receiver.
d. Show that the optimum receiver can be implemented by using just one filter (see the

block diagram in Figure P13.11(b)). What are the characteristics of the matched filter,
the sampler and decision device?

e. Now assume that the channel is not ideal but has an impulse response of c(t) =
δ(t) + 1

2δ(t − 1
2 T ). Using the same matched filter as in (d), design the optimum

receiver.
f. Assuming that the channel impulse response is c(t) = δ(t) + aδ(t − 1

2 T ), where a is
a random variable uniformly distributed on [0, 1], and using the same matched filter
as in (d), design the optimum receiver.

(a)

(b)

FIGURE P13.11

13.12 A communication system employs dual antenna diversity and binary orthogonal FSK
modulation. The received signals at the two antennas are

r (t) = α1s(t) + n1(t)

r2(t) = α2s(t) + n2(t)

where α1 and α2 are statistically iid Rayleigh random variables, and n1(t) and n2(t) are
statistically independent, zero-mean and white Gaussian random processes with power-
spectral density 1

2 N0. The two signals are demodulated, squared, and then combined
(summed) prior to detection.
a. Sketch the functional block diagram of the entire receiver, including the demodulator,

the combiner, and the detector.
b. Plot the probability of error for the detector and compare the result with the case of

no diversity.
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13.13 The two equivalent lowpass signals shown in Figure P13.13 are used to transmit a binary
sequence. The equivalent low-pass impulse response of the channel is h(t) = 4δ(t) −
2δ(t −T ). To avoid pulse overlap between successive transmissions, the transmission rate
in bits/s is selected to be R = 1/2T . The transmitted signals are equally probable and
are corrupted by additive zero-mean white Gaussian noise having an equivalent lowpass
representation z(t) with an autocorrelation function

Rzz(τ ) = E[z∗(t)z(t + τ )] = 2N0δ(τ )

a. Sketch the two possible equivalent lowpass noise-free received waveforms.
b. Specify the optimum receiver and sketch the equivalent lowpass impulse responses of

all filters used in the optimum receiver. Assume coherent detection of the signals.

FIGURE P13.13

13.14 Verify the relation in Equation 13.3–14 by making the change of variable γ = α2Eb/N0

in the Nakagami-m distribution.

13.15 Consider a digital communication system that uses two transmitting antennas and one
receiving antenna. The two transmitting antennas are sufficiently separated so as to pro-
vide dual spatial diversity in the transmission of the signal. The transmission scheme is
as follows: If s1 and s2 represent a pair of symbols from either a one-dimensional or a
two-dimensional signal constellation, which are to be transmitted by the two antennas,
the signal from the first antenna over two signal intervals is (s1, s∗

2 ) and from the second
antenna the transmitted signal is (s2, −s∗

1 ). The signal received by the single receiving
antenna over the two signal intervals is

r1 = h1s1 + h2s2 + n1

r2 = h1s∗
2 − h2s∗

1 + n2

where (h1, h2) represent the complex-valued channel path gains, which may be assumed
to be zero-mean, complex Gaussian with unit variance and statistically independent. The
channel path gains (h1, h2) are assumed to be constant over the two signal intervals and
known to the receiver. The terms (n1, n2) represent additive white Gaussian noise terms
that have zero-mean and variance σ 2 and uncorrelated.
a. Show how to recover the transmitted symbols (s1, s2) from (r1, r2) and achieve dual

diversity reception.
b. If the energy in the pair (s1, s2) is (Es, Es) and the modulation is binary PSK, determine

the probability of error.
c. Repeat (b) if the modulation is QPSK.

13.16 In the suppression of ICI in on DFDM system, the received signal vector for the mth
frame may be expressed as

r(m) = H(m)W s(m) + n(m)
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where W is the N × N IDFT transformation matrix, s(m) is the N ×1 signal vector, n(m)
is the zero-mean, Gaussian noise vector with iid components, and H(m) is the N × N
channel impulse response matrix, defined as

H(m) = [hH (0, m) hH (1, m) · · · hH (N − 1, m)]H

where h(n, m) is the right cyclic shift by n + 1 positions of the zero-padded channel
impulse response vector of dimension N × 1.

By expressing the DFT of r(m) by R(m), derive the relations in Equations 13.6–24,
13.6–25, and 13.6–27, where G(m) is defined in Equation 13.6–26.

13.17 Prove the result given in Equation 13.6–17.

13.18 Prove the result given in Equation 13.6–18.


